Addressing the annotation challenge in 3D Point Cloud segmentation has inspired research into weakly supervised learning. Existing approaches mainly focus on exploiting manifold and pseudo-labeling to make use of large unlabeled data points. A fundamental challenge here lies in the large intra-class variations of local geometric structure, resulting in subclasses within a semantic class. In this work, we leverage this intuition and opt for maintaining an individual classifier for each subclass. Technically, we design a multi-prototype classifier, each prototype serves as the classifier weights for one subclass. To enable effective updating of multi-prototype classifier weights, we propose two constraints respectively for updating the prototypes w.r.t. all point features and for encouraging the learning of diverse prototypes. Experiments on weakly supervised 3D point cloud segmentation tasks validate the efficacy of proposed method in particular at low-label regime. Our hypothesis is also verified given the consistent discovery of semantic subclasses at no cost of additional annotations.
翻译:3D 点云分割法的批注挑战已经激发了对监管不力的学习的研究。现有方法主要侧重于利用多种和假标签来利用大型未贴标签的数据点。这里的一个基本挑战在于本地几何结构的大型类内变异,导致语义类内出现子类。在这项工作中,我们利用这种直觉,选择为每个子类保留一个单个分类器。在技术上,我们设计了一个多原型分类器,每个原型作为一个子类的分类器。为了能够有效地更新多原型分类器的重量,我们建议了两个限制,分别用于更新原型 w.r.t.所有点特征和鼓励不同原型的学习。关于监管不力的3D点云分割任务的实验证实了拟议方法的功效,特别是在低标签制度下。由于不断发现语义子类而无需额外的说明,我们的假设也得到了验证。