Object detectors usually achieve promising results with the supervision of complete instance annotations. However, their performance is far from satisfactory with sparse instance annotations. Most existing methods for sparsely annotated object detection either re-weight the loss of hard negative samples or convert the unlabeled instances into ignored regions to reduce the interference of false negatives. We argue that these strategies are insufficient since they can at most alleviate the negative effect caused by missing annotations. In this paper, we propose a simple but effective mechanism, called Co-mining, for sparsely annotated object detection. In our Co-mining, two branches of a Siamese network predict the pseudo-label sets for each other. To enhance multi-view learning and better mine unlabeled instances, the original image and corresponding augmented image are used as the inputs of two branches of the Siamese network, respectively. Co-mining can serve as a general training mechanism applied to most of modern object detectors. Experiments are performed on MS COCO dataset with three different sparsely annotated settings using two typical frameworks: anchor-based detector RetinaNet and anchor-free detector FCOS. Experimental results show that our Co-mining with RetinaNet achieves 1.4%~2.1% improvements compared with different baselines and surpasses existing methods under the same sparsely annotated setting.


翻译:然而,它们的表现远不尽人意。 多数现有的稀有附加说明的物体探测方法,要么对硬负样品的丢失进行重新加权,要么将未贴标签的样品转换为被忽视的区域,以减少虚假负面样品的干扰。 我们争辩说,这些战略是不够的,因为它们最多可以减轻缺失说明造成的消极影响。 在本文件中,我们提议了一个简单而有效的机制,称为共同采矿,用于少量附加说明的物体探测。在我们的共同采矿中,一个Siamese网络的两个分支为对方预测假标签套件。为了加强多视学习和更好的未贴标签的矿样,最初的图像和相应的扩大图像分别用作暹米网络两个分支的投入。共同采矿可以作为适用于大多数现代物体探测器的一般培训机制。在MS COCO数据集上进行实验,三种不同的、有少量附加说明的装置,使用两种典型的框架:基于锚的探测器RetinaNet和不含固定标签的探测器。 实验结果显示,我们与不同基底的Srestrial2.1% 相比,我们与不同的基底基底的Sregreal-rveal-lationslaveal roprisal laveal laveal as bas bas bas laveal laveild duration a lavegild laveal bird durgild laved laved laved durs bird durs bird laved burs burs bors burs bors burs brod.

13
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
专知会员服务
109+阅读 · 2020年3月12日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
4+阅读 · 2018年6月4日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
Clustered Object Detection in Aerial Images
Arxiv
5+阅读 · 2019年8月27日
Augmentation for small object detection
Arxiv
11+阅读 · 2019年2月19日
Arxiv
4+阅读 · 2016年12月29日
VIP会员
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
4+阅读 · 2018年6月4日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
Top
微信扫码咨询专知VIP会员