We study the classical problem of deriving minimax rates for density estimation over convex density classes. Building on the pioneering work of Le Cam (1973), Birge (1983, 1986), Wong and Shen (1995), Yang and Barron (1999), we determine the exact (up to constants) minimax rate over any convex density class. This work thus extends these known results by demonstrating that the local metric entropy of the density class always captures the minimax optimal rates under such settings. Our bounds provide a unifying perspective across both parametric and nonparametric convex density classes, under weaker assumptions on the richness of the density class than previously considered. Our proposed `multistage sieve' MLE applies to any such convex density class. We apply our risk bounds to rederive known minimax rates including bounded total variation, and Holder density classes. We further illustrate the utility of the result by deriving upper bounds for less studied classes, e.g., convex mixture of densities.
翻译:我们根据Le Cam(1973年)、Birge(1983年、1986年)、Wong和Shen(1995年)、Yang和Barron(1999年)、Wang和Shen(1995年)、Yang和Barron(1999年)的开创性工作,确定任何 convex 密度类的精确(直至常数)微缩计算率,从而扩大这些已知结果,证明密度类的本地公吨酶总是在这种环境下捕捉微型峰值的最佳率。我们的界限为对密度类的丰富程度的假设比以前所考虑的要弱,提供了一种统一的观点。我们提议的“多级筛选”MLE适用于任何此类convex密度类。我们把风险界限应用到已知微缩增缩率,包括捆绑的总变异和 Holder 密度类。我们进一步说明了通过为研究较少的类类(例如密度的粘合体混合物)得出上层的结果的效用。