The matrix-based R\'enyi's entropy allows us to directly quantify information measures from given data, without explicit estimation of the underlying probability distribution. This intriguing property makes it widely applied in statistical inference and machine learning tasks. However, this information theoretical quantity is not robust against noise in the data, and is computationally prohibitive in large-scale applications. To address these issues, we propose a novel measure of information, termed low-rank matrix-based R\'enyi's entropy, based on low-rank representations of infinitely divisible kernel matrices. The proposed entropy functional inherits the specialty of of the original definition to directly quantify information from data, but enjoys additional advantages including robustness and effective calculation. Specifically, our low-rank variant is more sensitive to informative perturbations induced by changes in underlying distributions, while being insensitive to uninformative ones caused by noises. Moreover, low-rank R\'enyi's entropy can be efficiently approximated by random projection and Lanczos iteration techniques, reducing the overall complexity from $\mathcal{O}(n^3)$ to $\mathcal{O}(n^2 s)$ or even $\mathcal{O}(ns^2)$, where $n$ is the number of data samples and $s \ll n$. We conduct large-scale experiments to evaluate the effectiveness of this new information measure, demonstrating superior results compared to matrix-based R\'enyi's entropy in terms of both performance and computational efficiency.
翻译:以 矩阵为基础的 R\ enyi 的 entropy 使我们能够直接量化来自 给定数据的信息量, 而没有明确估计基本概率分布 。 这种令人感兴趣的属性使得它被广泛应用于统计推论和机器学习任务。 但是, 这些信息的理论数量对数据中的噪音并不强劲, 而且在大规模应用中是计算上令人窒息的。 为了解决这些问题, 我们提议了一种新的信息量度, 称为低级基底 R\ enyi 的 entropy, 以无限可变内核矩阵的低位表示值为基础。 拟议的 entropy 功能继承了原始定义中直接从数据中量化信息的特殊性, 但也享有额外的优势, 包括强健和有效计算。 具体地说, 我们的低位变异体对于基础分布变化引起的信息扰动性更敏感, 而对于由噪音引起的非强化性的信息不敏感。 此外, 低级 R\ eny 的 enty entropy enropy, 可以通过随机投影和 Lanczo it 技术来有效估计 。 precal press real deal deal deal deal deal ral deal $; sal dequal deal deal $; sal deal deal deal deal deal deal deal deal $; s bal deal $; s bal $= s