In the present paper we initiate the challenging task of building a mathematically sound theory for Adaptive Virtual Element Methods (AVEMs). Among the realm of polygonal meshes, we restrict our analysis to triangular meshes with hanging nodes in 2d -- the simplest meshes with a systematic refinement procedure that preserves shape regularity and optimal complexity. A major challenge in the a posteriori error analysis of AVEMs is the presence of the stabilization term, which is of the same order as the residual-type error estimator but prevents the equivalence of the latter with the energy error. Under the assumption that any chain of recursively created hanging nodes has uniformly bounded length, we show that the stabilization term can be made arbitrarily small relative to the error estimator provided the stabilization parameter of the scheme is sufficiently large. This quantitative estimate leads to stabilization-free upper and lower a posteriori bounds for the energy error. This novel and crucial property of VEMs hinges on the largest subspace of continuous piecewise linear functions and the delicate interplay between its coarser scales and the finer ones of the VEM space. An important consequence for piecewise constant data is a contraction property between consecutive loops of AVEMs, which we also prove. Our results apply to $H^1$-conforming (lowest order) VEMs of any kind, including the classical and enhanced VEMs.


翻译:在本文中,我们启动了为适应虚拟元素方法(AVEMs)建立一个数学上健全的理论(AVEMs)这一具有挑战性的任务。在多边形节点领域,我们的分析仅限于以挂在2d的节点 -- -- 最简单的节点和系统完善程序,以保持规律性和最佳复杂性的系统完善程序。AVEMs事后错误分析中的一项重大挑战是稳定化术语的存在,该术语与剩余类型误差估计符的顺序相同,但防止后者与能源误差等同。在假定任何循环生成的节点的链均具有一致的界限长度的情况下,我们显示稳定化术语相对于错误估计符提供的系统稳定化参数可以被任意缩小。这一量化估计导致能源误差的上下一个后端。VEMMs的新和关键属性取决于连续直线函数的最大亚空间,以及其细缩缩缩缩的缩略图和正缩略图之间的微妙相互作用。我们不断增强的AEMM1和正序序列之间的数据结果也是我们不断增强的循环AEM1号。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年2月2日
Arxiv
0+阅读 · 2023年2月2日
Arxiv
0+阅读 · 2023年2月2日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员