Bayesian clinical trials can benefit of available historical information through the elicitation of informative prior distributions. Concerns are however often raised about the potential for prior-data conflict and the impact of Bayes test decisions on frequentist operating characteristics, with particular attention being assigned to inflation of type I error rates. This motivates the development of principled borrowing mechanisms, that strike a balance between frequentist and Bayesian decisions. Ideally, the trust assigned to historical information defines the degree of robustness to prior-data conflict one is willing to sacrifice. However, such relationship is often not directly available when explicitly considering inflation of type I error rates. We build on available literature relating frequentist and Bayesian test decisions, and investigate a rationale for inflation of type I error rate which explicitly and linearly relates the amount of borrowing and the amount of type I error rate inflation in one-arm studies. A novel dynamic borrowing mechanism tailored to hypothesis testing is additionally proposed. We show that, while dynamic borrowing prevents the possibility to obtain a simple closed form type I error rate computation, an explicit upper bound can still be enforced. Connections with the robust mixture prior approach, particularly in relation to the choice of the mixture weight and robust component, are made. Simulations are performed to show the properties of the approach for normal and binomial outcomes.


翻译:贝叶斯临床试验可以通过事先发布信息,了解已有的历史信息,从而获益于巴耶斯临床试验。然而,人们往往对先前数据冲突的可能性和贝耶斯测试决定对常客操作特点的影响表示关切,特别注意I型误差率的通货膨胀。这促使制定原则性借款机制,在常客和巴耶斯人的决定之间取得平衡。理想的情况是,对历史信息的信任决定了人们愿意牺牲的先前数据冲突的稳健程度。然而,在明确考虑第一类误差率的通货膨胀时,这种关系往往无法直接获得。我们以现有的关于常客和贝耶斯人测试决定的文献为基础,调查在单臂研究中明确和线性地将借款数额和I型误差率通货膨胀数额联系起来的I型误差率率的通货膨胀理由。另外还提议了一种适应假设测试的新的动态借款机制。我们表明,尽管动态借款妨碍了获得简单封闭的表I型误率计算的可能性,但明确的上限仍可以执行。我们以前采用稳健混合方法,特别是在选择混合物重量和稳重的成分时,将Simmadal 。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年1月31日
Arxiv
0+阅读 · 2023年1月31日
Arxiv
0+阅读 · 2023年1月29日
Arxiv
0+阅读 · 2023年1月27日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员