Leveraging well-established MCMC strategies, we propose MCMC-interactive variational inference (MIVI) to not only estimate the posterior in a time constrained manner, but also facilitate the design of MCMC transitions. Constructing a variational distribution followed by a short Markov chain that has parameters to learn, MIVI takes advantage of the complementary properties of variational inference and MCMC to encourage mutual improvement. On one hand, with the variational distribution locating high posterior density regions, the Markov chain is optimized within the variational inference framework to efficiently target the posterior despite a small number of transitions. On the other hand, the optimized Markov chain with considerable flexibility guides the variational distribution towards the posterior and alleviates its underestimation of uncertainty. Furthermore, we prove the optimized Markov chain in MIVI admits extrapolation, which means its marginal distribution gets closer to the true posterior as the chain grows. Therefore, the Markov chain can be used separately as an efficient MCMC scheme. Experiments show that MIVI not only accurately and efficiently approximates the posteriors but also facilitates designs of stochastic gradient MCMC and Gibbs sampling transitions.
翻译:在利用成熟的MCMC战略的同时,我们建议MCMC-互动互换推导法(MIVI)不仅以时间限制的方式估计后部,而且还为MCMC过渡的设计提供便利。 构建一个有参数的短马尔科夫链之后的变式分布,利用变式推断和MCMC的互补特性鼓励相互改进。 一方面,随着变式分布的定位位于高后部密度区域,Markov链在变式推断框架中得到优化,以便有效瞄准后部。 另一方面,具有相当灵活性的优化的Markov链引导着向后部的变式分布,并减轻对不确定性的低估。 此外,我们证明MIVI的优化的Markov链吸收了外推法,这意味着随着链条的增长,其边缘分布会接近真正的后部。 因此,Markov链可以被单独用作高效的 MMC 计划。 实验表明,MIVI不仅精确和高效地推进了对图像的升级和升级到图像的模型。