Inferring missing links in knowledge graphs (KG) has attracted a lot of attention from the research community. In this paper, we tackle a practical query answering task involving predicting the relation of a given entity pair. We frame this prediction problem as an inference problem in a probabilistic graphical model and aim at resolving it from a variational inference perspective. In order to model the relation between the query entity pair, we assume that there exists an underlying latent variable (paths connecting two nodes) in the KG, which carries the equivalent semantics of their relations. However, due to the intractability of connections in large KGs, we propose to use variation inference to maximize the evidence lower bound. More specifically, our framework (\textsc{Diva}) is composed of three modules, i.e. a posterior approximator, a prior (path finder), and a likelihood (path reasoner). By using variational inference, we are able to incorporate them closely into a unified architecture and jointly optimize them to perform KG reasoning. With active interactions among these sub-modules, \textsc{Diva} is better at handling noise and coping with more complex reasoning scenarios. In order to evaluate our method, we conduct the experiment of the link prediction task on multiple datasets and achieve state-of-the-art performances on both datasets.
翻译:在知识图形( KG) 中, 测算缺失的链接引起了研究界的极大关注。 在本文中, 我们处理一个实际的问答任务, 包括预测特定实体对应方的关系。 我们将这一预测问题作为概率图形模型中的一个推论问题, 目的是从变异推论角度解决这个问题。 为了模拟查询实体对对立之间的关系, 我们假设在 KG 中存在一个潜在的潜在变量( 连接两个节点的路径), 该变量含有与其关系相当的语义。 但是, 由于大 KGs 中连接的易感性, 我们建议使用变异推论, 使证据的约束性最大化。 更具体地说, 我们的框架(\ textsc{Diva} ) 由三个模块组成, 即后向相近相近的对应方对等, 以及可能性( 方向辨识器) 。 通过使用变异推论, 我们能够将它们紧密地纳入一个统一的架构, 并共同优化它们来进行 KG 推理 。 通过这些子模型的正面互动, 和我们更精确地分析了我们更精确的 的变相推理学 。