Regularization is a common tool in variational inverse problems to impose assumptions on the parameters of the problem. One such assumption is sparsity, which is commonly promoted using lasso and total variation-like regularization. Although the solutions to many such regularized inverse problems can be considered as points of maximum probability of well-chosen posterior distributions, samples from these distributions are generally not sparse. In this paper, we present a framework for implicitly defining a probability distribution that combines the effects of sparsity imposing regularization with Gaussian distributions. Unlike continuous distributions, these implicit distributions can assign positive probability to sparse vectors. We study these regularized distributions for various regularization functions including total variation regularization and piecewise linear convex functions. We apply the developed theory to uncertainty quantification for Bayesian linear inverse problems and derive a Gibbs sampler for a Bayesian hierarchical model. To illustrate the difference between our sparsity-inducing framework and continuous distributions, we apply our framework to small-scale deblurring and computed tomography examples.


翻译:常规化是将问题参数的假设强加于人的各种反常问题的一个常见工具。这种假设是聚变,通常使用拉索和完全变异式的正规化来加以推广。虽然许多此类常规化的反常问题的解决方案可以被视为选好后后子分布的最大概率点,但这些分布的样本一般并不稀释。在本文中,我们提出了一个框架,可以隐含地界定一种概率分布,将随机化强制规范的影响与高山分布结合起来。与连续分布不同,这些隐性分布可以给稀散的矢量分配出正概率。我们研究了各种正规化功能的这些常规化分布,包括完全变异的正规化和细线性线性二次曲线功能。我们应用了为巴伊斯线性反问题进行不确定性的量化的理论,并为巴伊斯等级模型得出Gibbs取样器。我们用我们的框架来说明我们松散式教育框架和连续分布之间的差别。我们用我们的框架来说明小规模的分流和计算图象学实例。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Meta最新WWW2022《联邦计算导论》教程,附77页ppt
专知会员服务
59+阅读 · 2022年5月5日
专知会员服务
50+阅读 · 2020年12月14日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
9+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
14+阅读 · 2022年10月15日
Arxiv
14+阅读 · 2022年5月6日
Arxiv
23+阅读 · 2022年2月24日
Generalized Out-of-Distribution Detection: A Survey
Arxiv
15+阅读 · 2021年10月21日
Arxiv
45+阅读 · 2019年12月20日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关论文
Arxiv
14+阅读 · 2022年10月15日
Arxiv
14+阅读 · 2022年5月6日
Arxiv
23+阅读 · 2022年2月24日
Generalized Out-of-Distribution Detection: A Survey
Arxiv
15+阅读 · 2021年10月21日
Arxiv
45+阅读 · 2019年12月20日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
9+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员