项目名称: 植物分子设计中高维数据的低维稀疏逼近方法
项目编号: No.91530117
项目类型: 重大研究计划
立项/批准年度: 2016
项目学科: 数理科学和化学
项目作者: 许跃生
作者单位: 中山大学
项目金额: 25万元
中文摘要: 本项目为申请人已结题培育项目“植物分子设计中高维数据的低维稀疏逼近方法”(91130009, 时间:2012年1月至2014年12月)的延续研究。前一项目在信号稀疏逼近与表示的数学理论与方法和在植物分子设计的应用方面均取得了一系列主要进展,在Inverse Problem, Applied and Computational Harmonic Analysis,Mathematics of Computation,Nucleic Acids Research等期刊发表论文45篇,获得计算机软件著作权一项,圆满地完成了预期研究目标。本项目计划继续针对植物分子设计中高维数据的处理问题开展研究。预期在一年时间内在如下方面取得重要进展:生物基因序列比对快速算法及软件;生物信号的稀疏表示;应用于植物分子信息分类的稀疏支持向量机方法;基于上述方法,探寻植物发育的关键基因和多基因调控网络。
中文关键词: 植物分子设计;高维数据;序列比对;再生核巴拿赫空间;基因调控
英文摘要: This project is a continuation of a former completed project of the applicant, titled “Low-dimensional sparse approximation methods for high dimensional data in plant molecule design” (91130009, 2012.1-2014.12). In the last project, we made a series of major progresses in the mathematical theory and methods for sparse approximation and representation of signals, and their applications in plant molecule design. We have published 45 papers in renowned journals including Inverse Problem,Applied and Computational Harmonic Analysis,Mathematics of Computation, Nucleic Acids Research, and was approved a software copyright, hereby excellently fulfilled the research objectives. In the current project, we plan to continue our study aiming at the high-dimensional data in plant molecule design. Within one year, we expect to achieve breakthroughs in fast algorithms and software for biological gene sequence alignment, sparse representation of biological signals, sparse SVM methods for plant molecular information classification, and the applications of these methods to the search of key genes and multi-gene regulated and control network in plant development.
英文关键词: plant molecular design;high dimensional data;sequence alignment;Reproducing Kernel Banach Space;gene regulation