We present an efficient semiparametric variational method to approximate the Gibbs posterior distribution of Bayesian regression models, which predict the data through a linear combination of the available covariates. Remarkable cases are generalized linear mixed models, support vector machines, quantile and expectile regression. The variational optimization algorithm we propose only involves the calculation of univariate numerical integrals, when no analytic solutions are available. Neither differentiability, nor conjugacy, nor elaborate data-augmentation strategies are required. Several generalizations of the proposed approach are discussed in order to account for additive models, shrinkage priors, dynamic and spatial models, providing a unifying framework for statistical learning that cover a wide range of applications. The properties of our semiparametric variational approximation are then assessed through a theoretical analysis and an extensive simulation study, in which we compare our proposal with Markov chain Monte Carlo, conjugate mean field variational Bayes and Laplace approximation in terms of signal reconstruction, posterior approximation accuracy and execution time. A real data example is then presented through a probabilistic load forecasting application on the US power load consumption data.


翻译:我们提出了一种有效的半参数变异方法,以近似于Gibbs Bayesian回归模型的事后分布,该模型通过现有共差的线性组合来预测数据。显著的案例是通用的线性混合模型、支持矢量机器、四分位和预期回归。我们提议的变异优化算法仅涉及在没有解析解决方案的情况下计算单体数字组合。不需要差异性、共和性或详细的数据增强战略。讨论了拟议方法的一些概括性,以核算添加模型、缩缩缩前、动态和空间模型,为涵盖广泛应用的统计学习提供一个统一框架。然后通过理论分析和广泛的模拟研究来评估我们半对准变近值的特性。在理论分析和广泛的模拟研究中,我们将我们的提案与Markov链 Monte Carlo、 conjugate 平均场变异性海湾和Laplace 近似性信号重建、后向近似精确度和执行时间进行比较。然后通过美国电荷消耗数据的可比较性负载数据预测性负荷预测应用来展示真实的数据。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
42+阅读 · 2020年12月18日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月30日
Arxiv
13+阅读 · 2022年10月20日
Arxiv
14+阅读 · 2022年10月15日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
20+阅读 · 2021年9月22日
Arxiv
10+阅读 · 2021年2月18日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
42+阅读 · 2020年12月18日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关论文
Arxiv
0+阅读 · 2023年3月30日
Arxiv
13+阅读 · 2022年10月20日
Arxiv
14+阅读 · 2022年10月15日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
20+阅读 · 2021年9月22日
Arxiv
10+阅读 · 2021年2月18日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员