The Distributional Random Forest (DRF) is a recently introduced Random Forest algorithm to estimate multivariate conditional distributions. Due to its general estimation procedure, it can be employed to estimate a wide range of targets such as conditional average treatment effects, conditional quantiles, and conditional correlations. However, only results about the consistency and convergence rate of the DRF prediction are available so far. We characterize the asymptotic distribution of DRF and develop a bootstrap approximation of it. This allows us to derive inferential tools for quantifying standard errors and the construction of confidence regions that have asymptotic coverage guarantees. In simulation studies, we empirically validate the developed theory for inference of low-dimensional targets and for testing distributional differences between two populations.
翻译:分布随机森林(DRF)是最近推出的一种随机森林算法,用于估计多变量有条件分布。由于它的一般估计程序,它可以用来估计一系列广泛的目标,如有条件平均治疗效果、有条件的孔数和有条件的关联性。然而,到目前为止,只有关于DRF预测的一致性和趋同率的结果。我们描述DRF的无症状分布,并发展出一种靴子近似值。这使我们能够获得推断工具,用以量化标准错误和构建具有无症状覆盖保障的信任区。在模拟研究中,我们用经验验证了已开发的低维目标推论和测试两个人群之间分布差异的理论。