Real-time estimation of actual environment depth is an essential module for various autonomous system tasks such as localization, obstacle detection and pose estimation. During the last decade of machine learning, extensive deployment of deep learning methods to computer vision tasks yielded successful approaches for realistic depth synthesis out of a simple RGB modality. While most of these models rest on paired depth data or availability of video sequences and stereo images, there is a lack of methods facing single-image depth synthesis in an unsupervised manner. Therefore, in this study, latest advancements in the field of generative neural networks are leveraged to fully unsupervised single-image depth synthesis. To be more exact, two cycle-consistent generators for RGB-to-depth and depth-to-RGB transfer are implemented and simultaneously optimized using the Wasserstein-1 distance. To ensure plausibility of the proposed method, we apply the models to a self acquised industrial data set as well as to the renown NYU Depth v2 data set, which allows comparison with existing approaches. The observed success in this study suggests high potential for unpaired single-image depth estimation in real world applications.
翻译:对实际环境深度的实时估计是各种自主系统任务的基本模块,如定位、障碍探测和估计。在过去十年的机器学习期间,广泛采用深学习方法进行计算机愿景任务,通过简单的RGB模式,产生了现实深度合成的成功方法。虽然这些模型大多依赖于对齐深度数据或视频序列和立体图像的可用性,但缺乏单一图像深度合成在不受监督的情况下所面临的方法。因此,在本研究中,基因神经网络领域的最新进展被利用到完全不受监督的单一图像深度合成中。为了更精确起见,使用瓦塞斯坦-1距离,实施并同时优化RGB-深度至RGB传输的两个周期一致的生成器。为了确保拟议方法的可信赖性,我们将这些模型应用于一个自我分解的工业数据集,以及已知的NYU深度V2数据集,以便能够与现有方法进行比较。本研究中观察到的成功表明,在现实世界中,未进行预测的单层深度估算的可能性很大。