Real-time 6D object pose estimation is essential for many real-world applications, such as robotic grasping and augmented reality. To achieve an accurate object pose estimation from RGB images in real-time, we propose an effective and lightweight model, namely High-Resolution 6D Pose Estimation Network (HRPose). We adopt the efficient and small HRNetV2-W18 as a feature extractor to reduce computational burdens while generating accurate 6D poses. With only 33\% of the model size and lower computational costs, our HRPose achieves comparable performance compared with state-of-the-art models. Moreover, by transferring knowledge from a large model to our proposed HRPose through output and feature-similarity distillations, the performance of our HRPose is improved in effectiveness and efficiency. Numerical experiments on the widely-used benchmark LINEMOD demonstrate the superiority of our proposed HRPose against state-of-the-art methods.


翻译:实时 6D 对象构成估计对于许多现实应用至关重要,例如机器人捕捉和扩大现实。为了实现一个精确的天体代表实时RGB图像的准确估计,我们提议了一个有效和轻量级模型,即高分辨率 6D 粒子估计网络(HRPose ) 。我们采用了高效和小型的 HRNetV2-W18 功能提取器,以减少计算负担,同时生成准确的 6D 构成。由于模型大小和计算成本只有33 ⁇,我们的HRPose与最新模型相比,取得了可比的性能。此外,通过输出和特征相似的蒸馏将知识从一个大模型转移到我们提议的HRPose,我们HRPose的性能提高了效力和效率。关于广泛使用的基准LINEMOD的量化实验显示了我们提议的HRPose相对于最新方法的优势。

1
下载
关闭预览

相关内容

专知会员服务
110+阅读 · 2020年3月12日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
12+阅读 · 2019年4月9日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员