The following three factors restrict the application of existing low-light image enhancement methods: unpredictable brightness degradation and noise, inherent gap between metric-favorable and visual-friendly versions, and the limited paired training data. To address these limitations, we propose an implicit Neural Representation method for Cooperative low-light image enhancement, dubbed NeRCo. It robustly recovers perceptual-friendly results in an unsupervised manner. Concretely, NeRCo unifies the diverse degradation factors of real-world scenes with a controllable fitting function, leading to better robustness. In addition, for the output results, we introduce semantic-orientated supervision with priors from the pre-trained vision-language model. Instead of merely following reference images, it encourages results to meet subjective expectations, finding more visual-friendly solutions. Further, to ease the reliance on paired data and reduce solution space, we develop a dual-closed-loop constrained enhancement module. It is trained cooperatively with other affiliated modules in a self-supervised manner. Finally, extensive experiments demonstrate the robustness and superior effectiveness of our proposed NeRCo. Our code is available at https://github.com/Ysz2022/NeRCo.
翻译:下面的三个因素限制了现有的低光图像增强方法的应用:不可预测的亮度退化和噪声,度量友好版本和视觉友好版本之间的固有差距以及有限的成对训练数据。为了解决这些限制,我们提出了一种用于低光图像增强的隐式神经表达方法,称为NeRCo。它可以在无监督的情况下稳健地恢复感知友好的结果。具体来说,NeRCo将现实世界场景的多样的退化因素与可控的拟合函数统一起来,从而导致更好的鲁棒性。此外,对于输出结果,我们引入了来自预训练的视觉语言模型的基于语义的监督先验。它不仅仅是遵循参考图像,还鼓励结果符合主观期望,找到更适合视觉的解决方案。此外,为了减少对成对数据的依赖并减少解决方案空间,我们开发了双闭环约束增强模块。它是在无监督的情况下与其他相关模块合作培训的。最后,广泛的实验证明了我们提出的NeRCo的鲁棒性和超群的有效性。我们的代码可在https://github.com/Ysz2022/NeRCo上获取。