简介:

深度学习技术在图像降噪方面获得了极大的关注。但是,处理噪声的不同类型的学习方法有很大的差异。具体来说,基于深度学习的判别式学习可以很好地解决高斯噪声。基于深度学习的优化模型方法对真实噪声的估计有很好的效果。迄今为止,很少有相关研究来总结用于图像去噪的不同深度学习技术。在本文中,作者对图像去噪中不同深度技术进行了比较研究。我们首先对(1)用于加白噪声图像的深卷积神经网络(CNN),(2)用于真实噪声图像的深CNN,(3)用于盲目去噪的深CNN和(4)用于混合噪声图像的深CNN进行分类,这是噪声,模糊和低分辨率图像的组合。然后,又分析了不同类型的深度学习方法的动机和原理。接下来,将在定量和定性分析方面比较和验证公共去噪数据集的最新方法。最后,论文指出了一些潜在的挑战和未来研究的方向。

简要内容:

图像去噪的深度学习方法的基础框架:

  • 机器学习方法
  • 神经网络方法
  • 卷积神经网络方法

图像去噪中的深度学习技术:

  • 用于加白噪声图像的深卷积神经网络
  • 深度学习技术可实现真正的噪点图像降噪
  • 盲降噪的深度学习技术
  • 深度学习技术用于混合噪声图像去噪
成为VIP会员查看完整内容
0
54

相关内容

机器学习的一个分支,它基于试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的一系列算法。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等

摘要

一个综合的人工智能系统不仅需要用不同的感官(如视觉和听觉)感知环境,还需要推断世界的条件(甚至因果)关系和相应的不确定性。在过去的十年里,我们看到了许多感知任务的重大进展,比如视觉对象识别和使用深度学习模型的语音识别。然而,对于更高层次的推理,具有贝叶斯特性的概率图模型仍然更加强大和灵活。近年来,贝叶斯深度学习作为一种将深度学习与贝叶斯模型紧密结合的统一的概率框架出现了。在这个总体框架中,利用深度学习对文本或图像的感知可以提高更高层次推理的性能,推理过程的反馈也可以增强文本或图像的感知。本文对贝叶斯深度学习进行了全面的介绍,并对其在推荐系统主题模型控制等方面的最新应用进行了综述。此外,我们还讨论了贝叶斯深度学习与其他相关课题如神经网络的贝叶斯处理之间的关系和区别。

介绍

在过去的十年中,深度学习在许多流行的感知任务中取得了显著的成功,包括视觉对象识别、文本理解和语音识别。这些任务对应于人工智能(AI)系统的看、读、听能力,它们无疑是人工智能有效感知环境所必不可少的。然而,要建立一个实用的、全面的人工智能系统,仅仅有感知能力是远远不够的。首先,它应该具备思维能力。

一个典型的例子是医学诊断,它远远超出了简单的感知:除了看到可见的症状(或CT上的医学图像)和听到患者的描述,医生还必须寻找所有症状之间的关系,最好推断出它们的病因。只有在那之后,医生才能给病人提供医疗建议。在这个例子中,虽然视觉和听觉的能力让医生能够从病人那里获得信息,但医生的思维能力才是关键。具体来说,这里的思维能力包括识别条件依赖、因果推理、逻辑演绎、处理不确定性等,显然超出了传统深度学习方法的能力。幸运的是,另一种机器学习范式,概率图形模型(PGM),在概率或因果推理和处理不确定性方面表现出色。问题在于,PGM在感知任务上不如深度学习模型好,而感知任务通常涉及大规模和高维信号(如图像和视频)。为了解决这个问题,将深度学习和PGM统一到一个有原则的概率框架中是一个自然的选择,在本文中我们称之为贝叶斯深度学习(BDL)。 在上面的例子中,感知任务包括感知病人的症状(例如,通过看到医学图像),而推理任务包括处理条件依赖性、因果推理、逻辑推理和不确定性。通过贝叶斯深度学习中有原则的整合,将感知任务和推理任务视为一个整体,可以相互借鉴。具体来说,能够看到医学图像有助于医生的诊断和推断。另一方面,诊断和推断反过来有助于理解医学图像。假设医生可能不确定医学图像中的黑点是什么,但如果她能够推断出症状和疾病的病因,就可以帮助她更好地判断黑点是不是肿瘤。 再以推荐系统为例。一个高精度的推荐系统需要(1)深入了解条目内容(如文档和电影中的内容),(2)仔细分析用户档案/偏好,(3)正确评价用户之间的相似度。深度学习的能力有效地处理密集的高维数据,如电影内容擅长第一子任务,而PGM专攻建模条件用户之间的依赖关系,项目和评分(参见图7为例,u, v,和R是用户潜在的向量,项目潜在的向量,和评级,分别)擅长其他两个。因此,将两者统一在一个统一的概率原则框架中,可以使我们在两个世界中都得到最好的结果。这种集成还带来了额外的好处,可以优雅地处理推荐过程中的不确定性。更重要的是,我们还可以推导出具体模型的贝叶斯处理方法,从而得到更具有鲁棒性的预测。

作为第三个例子,考虑根据从摄像机接收到的实时视频流来控制一个复杂的动态系统。该问题可以转化为迭代执行两项任务:对原始图像的感知和基于动态模型的控制。处理原始图像的感知任务可以通过深度学习来处理,而控制任务通常需要更复杂的模型,如隐马尔科夫模型和卡尔曼滤波器。由控制模型选择的动作可以依次影响接收的视频流,从而完成反馈回路。为了在感知任务和控制任务之间实现有效的迭代过程,我们需要信息在它们之间来回流动。感知组件将是控制组件估计其状态的基础,而带有动态模型的控制组件将能够预测未来的轨迹(图像)。因此,贝叶斯深度学习是解决这一问题的合适选择。值得注意的是,与推荐系统的例子类似,来自原始图像的噪声和控制过程中的不确定性都可以在这样的概率框架下自然地处理。 以上例子说明了BDL作为一种统一深度学习和PGM的原则方式的主要优势:感知任务与推理任务之间的信息交换、对高维数据的条件依赖以及对不确定性的有效建模。关于不确定性,值得注意的是,当BDL应用于复杂任务时,需要考虑三种参数不确定性:

  1. 神经网络参数的不确定性
  2. 指定任务参数的不确定性
  3. 感知组件和指定任务组件之间信息交换的不确定性

通过使用分布代替点估计来表示未知参数,BDL提供了一个很有前途的框架,以统一的方式处理这三种不确定性。值得注意的是,第三种不确定性只能在BDL这样的统一框架下处理;分别训练感知部分和任务特定部分相当于假设它们之间交换信息时没有不确定性。注意,神经网络通常是过参数化的,因此在有效处理如此大的参数空间中的不确定性时提出了额外的挑战。另一方面,图形模型往往更简洁,参数空间更小,提供了更好的可解释性。

除了上述优点之外,BDL内建的隐式正则化还带来了另一个好处。通过在隐藏单元、定义神经网络的参数或指定条件依赖性的模型参数上施加先验,BDL可以在一定程度上避免过拟合,尤其是在数据不足的情况下。通常,BDL模型由两个组件组成,一个是感知组件,它是某种类型神经网络的贝叶斯公式,另一个是任务特定组件,使用PGM描述不同隐藏或观察变量之间的关系。正则化对它们都很重要。神经网络通常过度参数化,因此需要适当地正则化。正则化技术如权值衰减和丢失被证明是有效地改善神经网络的性能,他们都有贝叶斯解释。在任务特定组件方面,专家知识或先验信息作为一种正规化,可以在数据缺乏时通过施加先验来指导模型。 在将BDL应用于实际任务时,也存在一些挑战。(1)首先,设计一个具有合理时间复杂度的高效的神经网络贝叶斯公式并非易事。这一行是由[42,72,80]开创的,但是由于缺乏可伸缩性,它没有被广泛采用。幸运的是,这个方向的一些最新进展似乎为贝叶斯神经网络的实际应用提供了一些启示。(2)第二个挑战是如何确保感知组件和任务特定组件之间有效的信息交换。理想情况下,一阶和二阶信息(例如,平均值和方差)应该能够在两个组件之间来回流动。一种自然的方法是将感知组件表示为PGM,并将其与特定任务的PGM无缝连接,如[24,118,121]中所做的那样。 本综述提供了对BDL的全面概述,以及各种应用程序的具体模型。综述的其余部分组织如下:在第2节中,我们将回顾一些基本的深度学习模型。第3节介绍PGM的主要概念和技术。这两部分作为BDL的基础,下一节第4节将演示统一BDL框架的基本原理,并详细说明实现其感知组件和特定于任务的组件的各种选择。第5节回顾了应用于不同领域的BDL模型,如推荐系统、主题模型和控制,分别展示了BDL在监督学习、非监督学习和一般表示学习中的工作方式。第6部分讨论了未来的研究问题,并对全文进行了总结。

结论和未来工作

BDL致力于将PGM和NN的优点有机地整合在一个原则概率框架中。在这项综述中,我们确定了这种趋势,并回顾了最近的工作。BDL模型由感知组件和任务特定组件组成;因此,我们分别描述了过去几年开发的两个组件的不同实例,并详细讨论了不同的变体。为了学习BDL中的参数,人们提出了从块坐标下降、贝叶斯条件密度滤波、随机梯度恒温器到随机梯度变分贝叶斯等多种类型的算法。 BDL从PGM的成功和最近在深度学习方面有前景的进展中获得了灵感和人气。由于许多现实世界的任务既涉及高维信号(如图像和视频)的有效感知,又涉及随机变量的概率推理,因此BDL成为利用神经网络的感知能力和PGM的(条件和因果)推理能力的自然选择。在过去的几年中,BDL在推荐系统、主题模型、随机最优控制、计算机视觉、自然语言处理、医疗保健等各个领域都有成功的应用。在未来,我们不仅可以对现有的应用进行更深入的研究,还可以对更复杂的任务进行探索。此外,最近在高效BNN (BDL的感知组件)方面的进展也为进一步提高BDL的可扩展性奠定了基础。

成为VIP会员查看完整内容
0
138

多模态表示学习旨在缩小不同模态之间的异质性差距,在利用普遍存在的多模态数据方面起着不可或缺的作用。基于深度学习的多模态表示学习由于具有强大的多层次抽象表示能力,近年来受到了广泛的关注。在本文中,我们提供了一个全面的深度多模态表示学习的综述论文。为了便于讨论如何缩小异质性差距,根据不同模态集成的底层结构,我们将深度多模态表示学习方法分为三种框架:联合表示、协调表示和编解码。此外,我们回顾了该领域的一些典型模型,从传统模型到新开发的技术。本文强调在新开发的技术的关键问题,如encoder-decoder模型,生成对抗的网络,和注意力机制学习的角度来看,多通道表示,我们所知,从来没有审核之前,即使他们已经成为当代研究的主要焦点。对于每个框架或模型,我们将讨论其基本结构、学习目标、应用场景、关键问题、优缺点,以使新研究者和有经验的研究者都能从中受益。最后,提出了今后工作的一些重要方向。

成为VIP会员查看完整内容
0
114

主题: A Review on Deep Learning Techniques for Video Prediction

摘要: 预测,预期和推理未来结果的能力是智能决策系统的关键组成部分。鉴于深度学习在计算机视觉中的成功,基于深度学习的视频预测已成为有前途的研究方向。视频预测被定义为一种自我监督的学习任务,它代表了一个表示学习的合适框架,因为它展示了提取自然视频中潜在模式的有意义的表示的潜在能力。视频序列预测的深度学习方法。我们首先定义视频预测的基础知识,以及强制性的背景概念和最常用的数据集。接下来,我们会仔细分析根据拟议的分类法组织的现有视频预测模型,突出显示它们的贡献及其在该领域的意义。数据集和方法的摘要均附有实验结果,有助于在定量基础上评估现有技术。通过得出一些一般性结论,确定开放研究挑战并指出未来的研究方向来对本文进行总结。

成为VIP会员查看完整内容
0
38

题目: Deep Learning for Visual Tracking: A Comprehensive Survey

简介: 视觉目标跟踪是计算机视觉领域中最受关注和最具挑战性的研究课题之一。考虑到这个问题的不适定性质及其在现实世界中广泛应用的情况,已经建立了大量的大型基准数据集,在这些数据集上已经开发了相当多的方法,并在近年来取得了显著进展——主要是最近基于深度学习(DL)的方法。这项综述的目的是系统地调查当前基于深度学习的视觉跟踪方法、基准数据集和评估指标。它也广泛地评价和分析领先的视觉跟踪方法。首先,从网络体系结构、网络利用、视觉跟踪网络训练、网络目标、网络输出、相关滤波优势利用六个关键方面,总结了基于dll的方法的基本特征、主要动机和贡献。其次,比较了常用的视觉跟踪基准及其各自的性能,总结了它们的评价指标。第三,在OTB2013、OTB2015、VOT2018和LaSOT等一系列成熟的基准上,全面检查最先进的基于dll的方法。最后,通过对这些最先进的方法进行定量和定性的批判性分析,研究它们在各种常见场景下的优缺点。它可以作为一个温和的使用指南,让从业者在什么时候、在什么条件下选择哪种方法。它还促进了对正在进行的问题的讨论,并为有希望的研究方向带来光明。

成为VIP会员查看完整内容
Deep_Learning_for_Visual_Tracking.pdf
0
42

论文主题: Deep Learning for Image Super-resolution: A Survey

论文摘要: 图像超分辨率(SR)是提高图像分辨率的一类重要的图像处理技术以及计算机视觉中的视频。近年来,基于深度学习的图像超分辨率研究取得了显著进展技术。在这项调查中,我们旨在介绍利用深度学习的图像超分辨率技术的最新进展系统的方法。一般来说,我们可以粗略地将现有的SR技术研究分为三大类:监督SR、非监督SR和领域特定SR。此外,我们还讨论了一些其他重要问题,如公开可用的基准数据集和性能评估指标。最后,我们通过强调几个未来来结束这项调查未来社区应进一步解决的方向和公开问题.

成为VIP会员查看完整内容
0
42

论文主题: Deep Semantic Segmentation of Natural and Medical Images: A Review

论文摘要: (医学)图像语义分割任务包括将图像的每个像素(或几个像素)分类为一个实例,其中每个实例(或类别)对应于一个类。此任务是场景理解概念的一部分,或更好地解释全局 图像的上下文。在医学图像分析领域,图像分割可用于图像引导干预、放射治疗或改进的放射诊断。在这篇综述中,我们将领先的基于深度学习的医学和非医学图像分割解决方案分为六大类:深度架构、基于数据合成、基于损失函数、序列模型、弱监督和多任务方法。此外,针对每一组,我们分析了这些组的每一个变体,并讨论了当前语义图像分割方法的局限性和未来的研究方向。

成为VIP会员查看完整内容
0
42

题目: Understanding Deep Learning Techniques for Image Segmentation

简介: 机器学习已被大量基于深度学习的方法所淹没。各种类型的深度神经网络(例如卷积神经网络,递归网络,对抗网络,自动编码器等)有效地解决了许多具有挑战性的计算机视觉任务,例如在不受限制的环境中对对象进行检测,定位,识别和分割。尽管有很多关于对象检测或识别领域的分析研究,但相对于图像分割技术,出现了许多新的深度学习技术。本文从分析的角度探讨了图像分割的各种深度学习技术。这项工作的主要目的是提供对图像分割领域做出重大贡献的主要技术的直观理解。从一些传统的图像分割方法开始,本文进一步描述了深度学习对图像分割域的影响。此后,大多数主要的分割算法已按照专用于其独特贡献的段落进行了逻辑分类。

成为VIP会员查看完整内容
Understanding Deep Learning Techniques for Image Segmentation.pdf
0
80

Since the proposal of big data analysis and Graphic Processing Unit (GPU), the deep learning technology has received a great deal of attention and has been widely applied in the field of imaging processing. In this paper, we have an aim to completely review and summarize the deep learning technologies for image denoising proposed in recent years. Morever, we systematically analyze the conventional machine learning methods for image denoising. Finally, we point out some research directions for the deep learning technologies in image denoising.

0
4
下载
预览
小贴士
相关VIP内容
专知会员服务
114+阅读 · 2020年6月21日
【文献综述】图像分割综述,224篇参考文献,附58页PDF
专知会员服务
80+阅读 · 2019年6月16日
相关资讯
多模态深度学习综述,18页pdf
专知
28+阅读 · 2020年3月29日
综述 | 图像配准 Image registration
计算机视觉life
12+阅读 · 2019年9月12日
基于深度学习的视频目标检测综述
极市平台
10+阅读 · 2019年7月19日
最全综述 | 图像目标检测
计算机视觉life
22+阅读 · 2019年6月24日
使用《Deep Image Prior》来做图像复原
AI研习社
6+阅读 · 2019年3月2日
基于深度学习的图像超分辨率最新进展与趋势【附PDF】
人工智能前沿讲习班
10+阅读 · 2019年2月27日
深度学习目标检测算法综述
AI研习社
15+阅读 · 2019年2月1日
Image Captioning 36页最新综述, 161篇参考文献
专知
74+阅读 · 2018年10月23日
相关论文
A survey on deep hashing for image retrieval
Xiaopeng Zhang
12+阅读 · 2020年6月10日
Image Segmentation Using Deep Learning: A Survey
Shervin Minaee,Yuri Boykov,Fatih Porikli,Antonio Plaza,Nasser Kehtarnavaz,Demetri Terzopoulos
31+阅读 · 2020年1月15日
A Comprehensive Survey on Transfer Learning
Fuzhen Zhuang,Zhiyuan Qi,Keyu Duan,Dongbo Xi,Yongchun Zhu,Hengshu Zhu,Hui Xiong,Qing He
87+阅读 · 2019年11月7日
Yash Srivastava,Vaishnav Murali,Shiv Ram Dubey,Snehasis Mukherjee
4+阅读 · 2019年8月27日
Advances in Natural Language Question Answering: A Review
K. S. D. Ishwari,A. K. R. R. Aneeze,S. Sudheesan,H. J. D. A. Karunaratne,A. Nugaliyadde,Y. Mallawarrachchi
4+阅读 · 2019年4月10日
A Hierarchical Neural Network for Sequence-to-Sequences Learning
Si Zuo,Zhimin Xu
3+阅读 · 2018年11月23日
Chunwei Tian,Yong Xu,Lunke Fei,Ke Yan
4+阅读 · 2018年10月11日
Image Captioning based on Deep Reinforcement Learning
Haichao Shi,Peng Li,Bo Wang,Zhenyu Wang
7+阅读 · 2018年9月13日
Learning Visual Question Answering by Bootstrapping Hard Attention
Mateusz Malinowski,Carl Doersch,Adam Santoro,Peter Battaglia
4+阅读 · 2018年8月1日
Seyed Sajad Mousavi,Michael Schukat,Enda Howley
12+阅读 · 2018年6月23日
Top