We present a neural technique for learning to select a local sub-region around a point which can be used for mesh parameterization. The motivation for our framework is driven by interactive workflows used for decaling, texturing, or painting on surfaces. Our key idea is to incorporate segmentation probabilities as weights of a classical parameterization method, implemented as a novel differentiable parameterization layer within a neural network framework. We train a segmentation network to select 3D regions that are parameterized into 2D and penalized by the resulting distortion, giving rise to segmentations which are distortion-aware. Following training, a user can use our system to interactively select a point on the mesh and obtain a large, meaningful region around the selection which induces a low-distortion parameterization. Our code and project page are currently available.
翻译:我们展示了一种神经技术, 学习围绕一个可用于网状参数化的点选择一个本地分区。 我们框架的动机是由用于降级、 纹理或表面油漆的互动式工作流程驱动的。 我们的关键想法是将分解概率作为古典参数化方法的权重纳入其中, 在神经网络框架内作为新颖的可区别参数化层加以实施。 我们训练了一个分解网络, 以选择3D区域, 这些区域被参数化为2D, 并受到由此产生的扭曲的制约, 导致偏差。 在培训后, 用户可以使用我们的系统交互选择网状上的点, 并获得围绕选择的大型、 有意义的区域, 从而导致低扭曲参数化。 我们的代码和工程页面目前可用 。