Classification margins are commonly used to estimate the generalization ability of machine learning models. We present an empirical study of these margins in artificial neural networks. A global estimate of margin size is usually used in the literature. In this work, we point out seldom considered nuances regarding classification margins. Notably, we demonstrate that some types of training samples are modelled with consistently small margins while affecting generalization in different ways. By showing a link with the minimum distance to a different-target sample and the remoteness of samples from one another, we provide a plausible explanation for this observation. We support our findings with an analysis of fully-connected networks trained on noise-corrupted MNIST data, as well as convolutional networks trained on noise-corrupted CIFAR10 data.
翻译:通常使用分类边距来估计机器学习模型的通用能力。我们对人工神经网络中的这些边距进行一项经验性研究。文献中通常使用全球边距估计值。在这项工作中,我们很少指出分类边距的细微差别。值得注意的是,我们表明,有些类型的培训样本的模型始终以小边距为模范,同时以不同方式影响一般化。通过显示与不同目标样本的最低距离和样本相互偏僻性之间的联系,我们对这一观察提供了合理的解释。我们通过分析关于噪音干扰MNIST数据的完全连接的网络以及接受噪音干扰CIFAR10数据培训的革命网络来支持我们的结论。