We introduce an approach for solving PDEs over manifolds using physics informed neural networks whose architecture aligns with spectral methods. The networks are trained to take in as input samples of an initial condition, a time stamp and point(s) on the manifold and then output the solution's value at the given time and point(s). We provide proofs of our method for the heat equation on the interval and examples of unique network architectures that are adapted to nonlinear equations on the sphere and the torus. We also show that our spectral-inspired neural network architectures outperform the standard physics informed architectures. Our extensive experimental results include generalization studies where the testing dataset of initial conditions is randomly sampled from a significantly larger space than the training set.
翻译:我们引入了一种方法,用物理知情神经网络解决多元体的PDE问题,这些网络的结构与光谱方法相一致。这些网络经过培训,可以作为初始状态、时戳和元点的输入样本,然后在给定时间和点输出溶液的价值。我们提供了我们用于热方程的方法的证明,即适合球体和托鲁斯非线性方程的独特网络结构的间隔和实例。我们还表明,我们的光谱导神经网络结构优于标准的物理知情结构。我们广泛的实验结果包括一般性研究,即初始条件的测试数据集是从比培训范围大得多的空间随机抽样的。