In 2018, the City of Kelowna entered into a license agreement with Dropbike to operate a dockless bike-share pilot in and around the downtown core. The bikes were tracked by the user's cell phone GPS through the Dropbike app. The City's Active Transportation team recognized that this GPS data could help understand the routes used by cyclists which would then inform decision-making for infrastructure improvements. Using OSMnx and NetworkX, the map of Kelowna was converted into a graph network to map inaccurate, infrequent GPS points to the nearest street intersection, calculate the potential paths taken by cyclists and count the number of trips by street segment though the comparison of different path-finding models. Combined with the data from four counters around downtown, a mixed effects statistical model and a least squares optimization were used to estimate a relationship between the different traffic patterns of the bike-share and counter data. Using this relationship based on sparse data input from physical counting stations and bike share data, estimations and visualizations of the annual daily bicycle volume in downtown Kelowna were produced. The analysis, modelling and visualization helped to better understand how the bike network was being used in the urban center, including non-traditional routes such as laneways and highway crossings.


翻译:2018年,Kelowna市与Dropbike签订了一项许可证协议,在市中心核心及其周围运行一个没有码头的自行车share试点;该自行车由用户的手机手机GPGP通过Dropbike应用程序跟踪;该市的活跃运输小组认识到,这一全球定位系统数据有助于理解骑自行车者使用的路线,然后为基础设施改进的决策提供信息;利用OSMnnx和NetworkX,将Kelowana地图转换成一个图形网络,以绘制不准确的地图,不经常的全球定位系统点到最近的街道十字路口,计算骑自行车者的潜在路线,并通过比较不同的路况调查模型计算街道段的旅行次数;结合来自市中心四座对面的数据,采用了混合效果统计模型和最小的平方优化,以估计自行车分配和反数据的不同交通模式之间的关系;利用基于物理计站和自行车共享数据很少的数据输入的Kelowna市中心每日自行车卷的数据、估计和可视化数据,制作了分析、建模和可视化,有助于更好地了解市中心公路、包括传统自行车路路段如何使用。

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
161+阅读 · 2020年1月16日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年3月31日
Arxiv
12+阅读 · 2020年6月20日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员