Recent research has used deep learning to develop partial differential equation (PDE) models in science and engineering. The functional form of the PDE is determined by a neural network, and the neural network parameters are calibrated to available data. Calibration of the embedded neural network can be performed by optimizing over the PDE. Motivated by these applications, we rigorously study the optimization of a class of linear elliptic PDEs with neural network terms. The neural network parameters in the PDE are optimized using gradient descent, where the gradient is evaluated using an adjoint PDE. As the number of parameters become large, the PDE and adjoint PDE converge to a non-local PDE system. Using this limit PDE system, we are able to prove convergence of the neural network-PDE to a global minimum during the optimization. Finally, we use this adjoint method to train a neural network model for an application in fluid mechanics, in which the neural network functions as a closure model for the Reynolds-averaged Navier--Stokes (RANS) equations. The RANS neural network model is trained on several datasets for turbulent channel flow and is evaluated out-of-sample at different Reynolds numbers.
翻译:最近的研究利用了深层次的学习,在科学和工程领域开发了部分差异方程(PDE)模型。PDE的功能形式由神经网络网络确定,神经网络参数则根据可用数据校准。对嵌入的神经网络进行校准可以通过优化PDE进行。受这些应用的激励,我们严格研究利用神经网络术语优化一类线性椭圆形PDE。PDE的神经网络参数使用梯度下沉来优化,对梯度使用联合PDE来评估。随着参数数目的增大,PDE和联合PDE将汇集到一个非本地的PDE系统。利用这一限制PDE系统,我们可以证明神经网络-PDE在优化期间与全球最低限度的趋同。最后,我们利用这一连接方法来培训一个具有神经网络模型用于流体机械的应用,在这个模型中,神经网络功能作为Reynolds-平均导航-Stokes(RANS)方程式的封闭模型。RANS神经网络模型在多个数据流流中经过培训。