In this paper, we present the Intra- and Inter-Human Relation Networks (I^2R-Net) for Multi-Person Pose Estimation. It involves two basic modules. First, the Intra-Human Relation Module operates on a single person and aims to capture Intra-Human dependencies. Second, the Inter-Human Relation Module considers the relation between multiple instances and focuses on capturing Inter-Human interactions. The Inter-Human Relation Module can be designed very lightweight by reducing the resolution of feature map, yet learn useful relation information to significantly boost the performance of the Intra-Human Relation Module. Even without bells and whistles, our method can compete or outperform current competition winners. We conduct extensive experiments on COCO, CrowdPose, and OCHuman datasets. The results demonstrate that the proposed model surpasses all the state-of-the-art methods. Concretely, the proposed method achieves 77.4% AP on CrowPose dataset and 67.8% AP on OCHuman dataset respectively, outperforming existing methods by a large margin. Additionally, the ablation study and visualization analysis also prove the effectiveness of our model.
翻译:在本文中,我们介绍了多人间和人际关系网络(I ⁇ 2R-Net)的多人间和人际关系网络(I ⁇ 2R-Net),它涉及两个基本模块。首先,人际关系模块在一个人身上运作,目的是捕捉人际依赖关系。第二,人际关系模块考虑多个实例之间的关系,侧重于捕捉人际互动。人类间关系模块可以通过减少特征地图的分辨率来设计非常轻重,同时学习有用的关联信息,以大大提升人际关系模块的性能。即使没有钟声和哨声,我们的方法也可以竞争或超越目前的竞争赢家。我们在COCO、CrowdPose和OCHuman数据集方面进行了广泛的实验。结果显示,拟议的模型超越了所有最先进的方法。具体地说,拟议的方法在CrowPose数据集上实现了77.4%的AP,在OCHAN数据集上实现了67.8%的AP,在很大的空间上比我们现有的方法要好。此外,我们进行的有效性研究和视觉化分析也证明了我们现有的方法。