Human pose estimation aims to accurately estimate a wide variety of human poses. However, existing datasets often follow a long-tailed distribution that unusual poses only occupy a small portion, which further leads to the lack of diversity of rare poses. These issues result in the inferior generalization ability of current pose estimators. In this paper, we present a simple yet effective data augmentation method, termed Pose Transformation (PoseTrans), to alleviate the aforementioned problems. Specifically, we propose Pose Transformation Module (PTM) to create new training samples that have diverse poses and adopt a pose discriminator to ensure the plausibility of the augmented poses. Besides, we propose Pose Clustering Module (PCM) to measure the pose rarity and select the "rarest" poses to help balance the long-tailed distribution. Extensive experiments on three benchmark datasets demonstrate the effectiveness of our method, especially on rare poses. Also, our method is efficient and simple to implement, which can be easily integrated into the training pipeline of existing pose estimation models.
翻译:然而,现有的数据集往往经过长期的分类,而异常的分布只占一小部分,这又导致稀有的构成缺乏多样性。这些问题导致当前表面估计者一般化能力低下。在本文中,我们提出了一个简单而有效的数据增强方法,称为“波斯变形”(Pose Transform),以缓解上述问题。具体地说,我们建议波斯变形模块(PTM)建立具有不同外形的新的培训样本,并采用一个构成歧视的模型,以确保扩大后构成的可信赖性。此外,我们建议“波斯组群”模块(PCM)测量其构成的稀有性,并选择“稀有”组合,以帮助平衡长期成型分布。关于三个基准数据集的广泛实验显示了我们方法的有效性,特别是稀有的外形。此外,我们的方法既高效又简单,可以很容易地纳入现有外形估计模型的培训管道中。