Significant improvement has been made on just noticeable difference (JND) modelling due to the development of deep neural networks, especially for the recently developed unsupervised-JND generation models. However, they have a major drawback that the generated JND is assessed in the real-world signal domain instead of in the perceptual domain in the human brain. There is an obvious difference when JND is assessed in such two domains since the visual signal in the real world is encoded before it is delivered into the brain with the human visual system (HVS). Hence, we propose an HVS-inspired signal degradation network for JND estimation. To achieve this, we carefully analyze the HVS perceptual process in JND subjective viewing to obtain relevant insights, and then design an HVS-inspired signal degradation (HVS-SD) network to represent the signal degradation in the HVS. On the one hand, the well learnt HVS-SD enables us to assess the JND in the perceptual domain. On the other hand, it provides more accurate prior information for better guiding JND generation. Additionally, considering the requirement that reasonable JND should not lead to visual attention shifting, a visual attention loss is proposed to control JND generation. Experimental results demonstrate that the proposed method achieves the SOTA performance for accurately estimating the redundancy of the HVS. Source code will be available at https://github.com/jianjin008/HVS-SD-JND.


翻译:由于发展了深层神经网络,特别是最近开发的未经监督的神经网络(JND)的生成模型,在仅仅显著的差别(JND)建模方面取得了显著的改进,特别是最近开发的未经监督的神经网络,然而,这些模型有一个重大缺陷,即产生的JND在现实世界信号域而不是在人类大脑的感知域域内进行评估,在这两个域内评估JND时,JND在这两个域内是明显不同的,因为真实世界的视觉信号在以人类视觉系统(HVS)传送到大脑之前就已经编码了。因此,我们提议为JNDA估计建立一个由HVS启发的信号降解网络。为了实现这一点,我们仔细分析JNDD主观浏览的HVS感知界过程,以获得相关的洞察,然后设计一个HVS启发信号退化(HVS-SD)网络,以代表HVS的信号退化。 一方面,在用人类视觉系统(HVSD)域内,我们学到的HVSDDD,使我们能够评估JNDD(HD)的感知觉界域域内。另一方面,它提供了更准确的先前信息信息,以便更好地指导JNDDDDDDDDDD的一代人。此外的感知觉觉的感知知知知过程,考虑JDA的视觉的功能的功能的演变。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员