The aim of this paper is twofold. Based on the geometric Wasserstein tangent space, we first introduce Wasserstein steepest descent flows. These are locally absolutely continuous curves in the Wasserstein space whose tangent vectors point into a steepest descent direction of a given functional. This allows the use of Euler forward schemes instead of the minimizing movement scheme (MMS) introduced by Jordan, Kinderlehrer, and Otto. The MMS finds Wasserstein gradient flows by successively computing Wasserstein proxies. For locally Lipschitz continuous functionals which are $\lambda$-convex along generalized geodesics, we show that there exists a unique Wasserstein steepest descent flow coinciding with the Wasserstein gradient flow. The second aim is to study Wasserstein flows of the (maximum mean) discrepancy with respect to Riesz kernels. The crucial part is hereby the treatment of the interaction energy. Although it is not $\lambda$-convex along generalized geodesics, we give analytic expressions for Wasserstein steepest descent flows of the interaction energy starting at Dirac measures. In contrast to smooth kernels, the particle may explode, i.e., the particle goes over to non-Dirac measures. The computation of steepest descent flows amounts to finding equilibrium measures with external fields, which nicely links Wasserstein flows of interaction energies with potential theory. Furthermore, we prove convergence of MMS to our Wasserstein steepest descent flows. Finally, we provide analytic Wasserstein steepest descent flows of discrepancies in one dimension and numerical simulations in two and three dimensions showing relations to interaction energy flows.
翻译:本文的目的是双重的。 根据瓦西斯坦平流层的几何空间, 我们首先引入了瓦西斯坦最陡峭的下降流。 这些是瓦西斯坦空间中本地绝对连续的曲线, 其内流矢量指向某个功能最陡峭的下降方向。 这允许使用 Euler 前行计划, 而不是约旦、 Kinderle Heart 和 Otto 引入的最小化运动计划。 MMS 通过连续计算 瓦西斯坦平流, 发现瓦西斯坦梯度的梯度流动。 当地Lipschitz 连续的功能, 与通用的地德斯大平流相交。 对于本地的利普施茨连续功能, 其内流值为$lambda$- convex, 我们展示了瓦塞斯坦最陡峭的下行流, 与瓦西斯坦最陡峭的下行流的下行流量 。 第二个目的是研究瓦西斯坦的( 最大平均值) 与Riesz 内核内流的能量流。 的内流, 的内向, 的内流, 的内流, 内流为 的内流, 的内流, 的内流, 我们的内流, 的内流, 向的内流。