This work introduces a reduced order modeling (ROM) framework for the solution of parameterized second-order linear elliptic partial differential equations formulated on unfitted geometries. The goal is to construct efficient projection-based ROMs, which rely on techniques such as the reduced basis method and discrete empirical interpolation. The presence of geometrical parameters in unfitted domain discretizations entails challenges for the application of standard ROMs. Therefore, in this work we propose a methodology based on i) extension of snapshots on the background mesh and ii) localization strategies to decrease the number of reduced basis functions. The method we obtain is computationally efficient and accurate, while it is agnostic with respect to the underlying discretization choice. We test the applicability of the proposed framework with numerical experiments on two model problems, namely the Poisson and linear elasticity problems. In particular, we study several benchmarks formulated on two-dimensional, trimmed domains discretized with splines and we observe a significant reduction of the online computational cost compared to standard ROMs for the same level of accuracy. Moreover, we show the applicability of our methodology to a three-dimensional geometry of a linear elastic problem.
翻译:这项工作引入了一个简化顺序模型(ROM)框架(ROM)框架,用于解决在不适合的地貌特征方面制定的二阶线性椭圆偏偏偏偏偏差方程的参数二阶线性偏差方程的解决方案。目标是建立高效的投影光谱,依靠减少基数法和独立的经验性内插法等技术。在不适于使用的域分解中存在几何参数,对标准ROM的应用构成挑战。因此,我们在此工作中建议了一个基于一)背景网目照片扩展的方法,和二)地方化战略,以减少基础功能减少的数量。我们获得的方法是计算高效和准确的,而对于基本的离散化选择则具有不可知性。我们用两个模型问题,即Poisson和线性弹性问题进行数字实验,测试拟议框架的适用性。特别是,我们研究了以两维、三角离线线为主的域所制定的若干基准。我们观察到,与同一精确度水平的标准ROM相比,在线计算成本大大降低。此外,我们展示了我们的方法对三维地质测量问题的直径问题的适用性。