This paper presents a methodology for integrating machine learning techniques into metaheuristics for solving combinatorial optimization problems. Namely, we propose a general machine learning framework for neighbor generation in metaheuristic search. We first define an efficient neighborhood structure constructed by applying a transformation to a selected subset of variables from the current solution. Then, the key of the proposed methodology is to generate promising neighbors by selecting a proper subset of variables that contains a descent of the objective in the solution space. To learn a good variable selection strategy, we formulate the problem as a classification task that exploits structural information from the characteristics of the problem and from high-quality solutions. We validate our methodology on two metaheuristic applications: a Tabu Search scheme for solving a Wireless Network Optimization problem and a Large Neighborhood Search heuristic for solving Mixed-Integer Programs. The experimental results show that our approach is able to achieve a satisfactory trade-off between the exploration of a larger solution space and the exploitation of high-quality solution regions on both applications.
翻译:本文介绍了一种将机器学习技术纳入计量经济学以解决组合优化问题的方法。 也就是说, 我们提出一个用于周边生物群落的通用机器学习框架。 我们首先通过对当前解决方案中选定的一组变量进行转换来定义一个高效的邻里结构。 然后, 拟议方法的关键在于通过选择含有解决方案空间目标来源的适当一组变量来产生有希望的邻里。 为了学习一个好的变量选择战略, 我们将这一问题发展成一个分类任务, 利用来自问题特点和高质量解决方案的结构信息。 我们验证了我们关于两种计量经济学应用的方法: 解决无线网络优化问题的塔布搜索计划, 以及解决混合内网程序的大型奈格伯尔人搜索超常技术。 实验结果表明,我们的方法能够在开发更大的解决方案空间和在两种应用中开发高质量解决方案区域之间实现令人满意的权衡。