We consider a variation of the classical proximal-gradient algorithm for the iterative minimization of a cost function consisting of a sum of two terms, one smooth and the other prox-simple, and whose relative weight is determined by a penalty parameter. This so-called fixed-point continuation method allows one to approximate the problem's trade-off curve, i.e. to compute the minimizers of the cost function for a whole range of values of the penalty parameter at once. The algorithm is shown to converge, and a rate of convergence of the cost function is also derived. Furthermore, it is shown that this method is related to iterative algorithms constructed on the basis of the $\epsilon$-subdifferential of the prox-simple term. Some numerical examples are provided.
翻译:我们考虑对一项成本功能进行迭接最小化的典型准偏差算法的变式,该算法由两个条件的总和组成,一个是顺流的,另一个是正流的,其相对权重由惩罚参数决定。这种所谓的固定点继续法使一个人能够近似问题的权衡曲线,即一次计算罚款参数所有各种值的成本函数最小化值。该算法被显示为趋同,并且还得出成本函数的趋同率。此外,该算法与以正流简术语的$\epsilon-sultal-prox-prox-prox-prox-prox-processal制成的迭代算法有关。提供了一些数字例子。