Gaussian processes are arguably the most important class of spatiotemporal models within machine learning. They encode prior information about the modeled function and can be used for exact or approximate Bayesian learning. In many applications, particularly in physical sciences and engineering, but also in areas such as geostatistics and neuroscience, invariance to symmetries is one of the most fundamental forms of prior information one can consider. The invariance of a Gaussian process' covariance to such symmetries gives rise to the most natural generalization of the concept of stationarity to such spaces. In this work, we develop constructive and practical techniques for building stationary Gaussian processes on a very large class of non-Euclidean spaces arising in the context of symmetries. Our techniques make it possible to (i) calculate covariance kernels and (ii) sample from prior and posterior Gaussian processes defined on such spaces, both in a practical manner. This work is split into two parts, each involving different technical considerations: part I studies compact spaces, while part II studies non-compact spaces possessing certain structure. Our contributions make the non-Euclidean Gaussian process models we study compatible with well-understood computational techniques available in standard Gaussian process software packages, thereby making them accessible to practitioners.
翻译:高斯进程可以说是机器学习中最重要的一流时空模型。 它们编码了关于模型功能的先前信息, 可以用于精确或近似巴伊西亚的学习。 在许多应用中, 特别是在物理科学和工程学中, 但也在地理统计学和神经科学等领域, 对对称性的差异是人们可以考虑的先前信息的最根本形式之一。 高斯进程对于这种对称性的偏差导致对等性概念的最自然的概括化。 在这项工作中, 我们开发了建设性和实用的技术, 用于建筑固定的高斯进程, 特别是物理科学和工程学, 但也用于地理统计学和神经科学等领域。 我们的技术使得有可能 (一) 计算常态核心, (二) 从这种空间上界定的前高斯进程和后戈斯进程的样本, 两者都以实际方式产生。 这项工作分为两个部分, 每一个部分涉及不同的技术考虑: 第一部分研究紧凑的空格进程, 而在非常大的非欧基空间上, 部分研究可兼容性技术。 我们用高亚标准的计算方法, 部分研究某些空格进程。