Physics-based covariance models provide a systematic way to construct covariance models that are consistent with the underlying physical laws in Gaussian process analysis. The unknown parameters in the covariance models can be estimated using maximum likelihood estimation, but direct construction of the covariance matrix and classical strategies of computing with it requires $n$ physical model runs, $n^2$ storage complexity, and $n^3$ computational complexity. To address such challenges, we propose to approximate the discretized covariance function using hierarchical matrices. By utilizing randomized range sketching for individual off-diagonal blocks, the construction process of the hierarchical covariance approximation requires $O(\log{n})$ physical model applications and the maximum likelihood computations require $O(n\log^2{n})$ effort per iteration. We propose a new approach to compute exactly the trace of products of hierarchical matrices which results in the expected Fischer information matrix being computable in $O(n\log^2{n})$ as well. The construction is totally matrix-free and the derivatives of the covariance matrix can then be approximated in the same hierarchical structure by differentiating the whole process. Numerical results are provided to demonstrate the effectiveness, accuracy, and efficiency of the proposed method for parameter estimations and uncertainty quantification.
翻译:物理学中的协方差模型提供了一种系统的方法来构建与高斯过程分析中的潜在物理法则一致的协方差模型。协方差模型中的未知参数可以使用极大似然估计来估计,但是直接构造协方差矩阵和使用经典策略进行计算需要n次物理模型运行,n²的存储复杂度和n³的计算复杂度。
为了解决这些挑战,我们建议使用层次矩阵来近似离散协方差函数。通过为各个非对角块使用随机化范围草绘,层次协方差近似的构造过程仅需要O(log(n))次物理模型应用程序。每次迭代的极大似然计算需要 O(nlog²(n)) 的功率。我们提出了一种新的方法来计算层次矩阵的乘积的痕迹,这导致了预期的Fischer信息矩阵也可在O(n log²(n)) 的时间内计算。构造完全无需矩阵,协方差矩阵的导数可以通过以同一层次结构差分整个过程来逼近。提供数值结果,以证明所提出的方法在参数估计和不确定性量化方面的有效性,准确性和效率。