Bayesian optimization is a data-efficient technique which can be used for control parameter tuning, parametric policy adaptation, and structure design in robotics. Many of these problems require optimization of functions defined on non-Euclidean domains like spheres, rotation groups, or spaces of positive-definite matrices. To do so, one must place a Gaussian process prior, or equivalently define a kernel, on the space of interest. Effective kernels typically reflect the geometry of the spaces they are defined on, but designing them is generally non-trivial. Recent work on the Riemannian Mat\'ern kernels, based on stochastic partial differential equations and spectral theory of the Laplace-Beltrami operator, offers promising avenues towards constructing such geometry-aware kernels. In this paper, we study techniques for implementing these kernels on manifolds of interest in robotics, demonstrate their performance on a set of artificial benchmark functions, and illustrate geometry-aware Bayesian optimization for a variety of robotic applications, covering orientation control, manipulability optimization, and motion planning, while showing its improved performance.
翻译:贝叶斯优化是一种数据有效的技术,可用于机器人控制参数调整、参数化策略适应以及结构设计。这些问题中的许多需要优化定义在非欧几里得域上的函数,例如球、旋转群或正定矩阵空间。要这样做,必须在所需空间上放置高斯过程先验,或者等效地在该空间上定义核函数。有效的核函数通常反映了它们所定义的空间的几何结构,但设计它们通常是不容易的。最近对黎曼马特恩核的研究基于随机偏微分方程和拉普拉斯-贝尔特拉米算子的谱理论,为构建这样的几何感知核函数提供了有望的途径。在本文中,我们研究了在机器人学中实施这些核函数的技术,证明了它们在一组人造基准函数上的性能, 并且演示了几何感知的贝叶斯优化在各种机器人应用方面的性能,涵盖了方向控制、可操作性优化和运动规划,同时显示其改进的性能。