Recent research has shown great potential for finding interpretable directions in the latent spaces of pre-trained Generative Adversarial Networks (GANs). These directions provide controllable generation and support a wide range of semantic editing operations such as zoom or rotation. The discovery of such directions is often performed in a supervised or semi-supervised fashion and requires manual annotations, limiting their applications in practice. In comparison, unsupervised discovery enables finding subtle directions a priori hard to recognize. In this work, we propose a contrastive-learning-based approach for discovering semantic directions in the latent space of pretrained GANs in a self-supervised manner. Our approach finds semantically meaningful dimensions compatible with state-of-the-art methods.
翻译:最近的研究显示,在经过训练的基因对抗网络(GANs)潜在空间找到可解释的方向具有巨大潜力。这些方向提供可控的生成,并支持一系列广泛的语义编辑操作,如缩放或旋转。发现这些方向的方式往往是以有监督或半监督的方式进行,需要人工说明,限制其实际应用。相比之下,未经监督的发现能够找到一个难以事先识别的微妙方向。在这项工作中,我们提出一种反向学习方法,以自我监督的方式在经过训练的GANs潜在空间发现语义方向。我们的方法发现,语义上有意义的维度与最先进的方法相容。