While supervised learning has enabled great progress in many applications, unsupervised learning has not seen such widespread adoption, and remains an important and challenging endeavor for artificial intelligence. In this work, we propose a universal unsupervised learning approach to extract useful representations from high-dimensional data, which we call Contrastive Predictive Coding. The key insight of our model is to learn such representations by predicting the future in latent space by using powerful autoregressive models. We use a probabilistic contrastive loss which induces the latent space to capture information that is maximally useful to predict future samples. It also makes the model tractable by using negative sampling. While most prior work has focused on evaluating representations for a particular modality, we demonstrate that our approach is able to learn useful representations achieving strong performance on four distinct domains: speech, images, text and reinforcement learning in 3D environments.
翻译:虽然受监督的学习在许多应用领域取得了巨大进展,但无人监督的学习并未如此广泛采用,而且仍然是人工智能方面的一项重要和具有挑战性的努力。在这项工作中,我们建议采用一种普遍、不受监督的学习方法,从高维数据中提取有用的表述,我们称之为反向预测编码。我们模型的关键洞察力是通过使用强大的自动递减模型预测潜伏空间的未来,从而了解这种表述。我们使用一种概率式的对比性损失,使潜伏空间捕捉对预测未来样本极为有用的信息。它也使模型能够通过使用负面抽样进行可移植。虽然大多数先前的工作都侧重于对特定模式的表述进行评估,但我们证明我们的方法能够学习有用的表述,在以下四个不同领域取得强有力的表现:演讲、图像、文字和强化学习3D环境中的学习。