Methods that learn representations of nodes in a graph play a critical role in network analysis since they enable many downstream learning tasks. We propose Graph2Gauss - an approach that can efficiently learn versatile node embeddings on large scale (attributed) graphs that show strong performance on tasks such as link prediction and node classification. Unlike most approaches that represent nodes as point vectors in a low-dimensional continuous space, we embed each node as a Gaussian distribution, allowing us to capture uncertainty about the representation. Furthermore, we propose an unsupervised method that handles inductive learning scenarios and is applicable to different types of graphs: plain/attributed, directed/undirected. By leveraging both the network structure and the associated node attributes, we are able to generalize to unseen nodes without additional training. To learn the embeddings we adopt a personalized ranking formulation w.r.t. the node distances that exploits the natural ordering of the nodes imposed by the network structure. Experiments on real world networks demonstrate the high performance of our approach, outperforming state-of-the-art network embedding methods on several different tasks. Additionally, we demonstrate the benefits of modeling uncertainty - by analyzing it we can estimate neighborhood diversity and detect the intrinsic latent dimensionality of a graph.


翻译:在图形中学习节点的表达方法在网络分析中发挥着关键作用,因为这些方法有助于许多下游学习任务。 我们提议了Greab2Gaus — — 这种方法可以有效学习大规模(配制的)图形的多功能节点嵌入,在链接预测和节点分类等任务上表现良好。 与大多数在低维连续空间中作为点矢量代表节点的方法不同, 我们将每个节点嵌入高斯分布, 使我们能够捕捉关于代表点的不确定性。 此外, 我们提议了一种不受监督的方法, 处理感应学习的情景, 并适用于不同种类的图表: 简单/ 归属的、 定向/ 未定向的图表。 通过利用网络结构和相关节点属性, 我们可以在没有额外培训的情况下, 概括到隐蔽的节点。 要了解这些嵌入, 我们采用个性化的排位方位配置 w.r.t。 利用网络结构对节点的自然排序的距离。 此外, 我们对真实世界网络进行了实验, 展示了我们的方法的高度性, 超越了模型的状态, 并且通过我们测量了区域图层图层的模型, 展示了我们能的图层化方法, 。

5
下载
关闭预览

相关内容

零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Representation Learning on Network 网络表示学习笔记
全球人工智能
5+阅读 · 2017年9月30日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
7+阅读 · 2018年5月23日
Arxiv
9+阅读 · 2018年3月28日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Representation Learning on Network 网络表示学习笔记
全球人工智能
5+阅读 · 2017年9月30日
Top
微信扫码咨询专知VIP会员