Few-shot segmentation is a challenging task that aims to segment objects of new classes given scarce support images. In the inductive setting, existing prototype-based methods focus on extracting prototypes from the support images; however, they fail to utilize semantic information of the query images. In this paper, we propose Bi-level Optimization (BiOpt), which succeeds to compute class prototypes from the query images under inductive setting. The learning procedure of BiOpt is decomposed into two nested loops: inner and outer loop. On each task, the inner loop aims to learn optimized prototypes from the query images. An init step is conducted to fully exploit knowledge from both support and query features, so as to give reasonable initialized prototypes into the inner loop. The outer loop aims to learn a discriminative embedding space across different tasks. Extensive experiments on two benchmarks verify the superiority of our proposed BiOpt algorithm. In particular, we consistently achieve the state-of-the-art performance on 5-shot PASCAL-$5^i$ and 1-shot COCO-$20^i$.


翻译:在感应环境中,现有的原型方法侧重于从支持图像中提取原型;然而,这些原型方法未能利用查询图像的语义信息。在本文中,我们提议采用双级优化(BiOpt),在感应设置下从查询图像中计算出类原型。BiOpt的学习程序分解成两个嵌入循环:内环和外环。在每项任务中,内环的目的是从查询图像中学习优化原型。内环是为了充分利用从支持和查询功能中获取的知识,以便向内部循环提供合理的初始化原型。外环的目的是学习一个跨不同任务的歧视性嵌入空间。对两个基准的广泛实验可以验证我们提议的BiOpt算法的优越性。特别是,我们始终在5发式PASAL-5美元和1发CO-20美元上实现最佳性能。

0
下载
关闭预览

相关内容

Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Learning Dynamic Routing for Semantic Segmentation
Arxiv
8+阅读 · 2020年3月23日
Deep Co-Training for Semi-Supervised Image Segmentation
Revisiting CycleGAN for semi-supervised segmentation
Arxiv
3+阅读 · 2019年8月30日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员