题目: Self-supervised Equivariant Attention Mechanism for Weakly Supervised Semantic Segmentation
摘要: 图像级弱监督语义分割是近年来深入研究的一个具有挑战性的问题。大多数高级解决方案都利用类激活映射(CAM)。然而,由于监督的充分性和弱监督的差距,CAMs很难作为目标掩模。在这篇论文中,我们提出了一个自我监督的等变注意机制(SEAM)来发现额外的监督并缩小差距。我们的方法是基于等方差是完全监督语义分割的一个隐含约束,其像素级标签在数据扩充过程中与输入图像进行相同的空间变换。然而,这种约束在图像级监控训练的凸轮上丢失了。因此,我们提出了对不同变换图像的预测凸轮进行一致性正则化,为网络学习提供自监督。此外,我们提出了一个像素相关模块(PCM),它利用上下文外观信息,并改进当前像素的预测由其相似的邻居,从而进一步提高CAMs的一致性。在PASCAL VOC 2012数据集上进行的大量实验表明,我们的方法在同等监督水平下表现优于最先进的方法。