Semantic segmentation of microscopic cell images using deep learning is an important technique, however, it requires a large number of images and ground truth labels for training. To address the above problem, we consider an efficient learning framework with as little data as possible, and we propose two types of learning strategies: One-shot segmentation which can learn with only one training sample, and Partially-supervised segmentation which assigns annotations to only a part of images. Furthermore, we introduce novel segmentation methods using the small prompt images inspired by prompt learning in recent studies. Our proposed methods use a pre-trained model based on only cell images and teach the information of the prompt pairs to the target image to be segmented by the attention mechanism, which allows for efficient learning while reducing the burden of annotation costs. Through experiments conducted on three types of microscopic cell image datasets, we confirmed that the proposed method improved the Dice score coefficient (DSC) in comparison with the conventional methods.
翻译:利用深度学习对显微细胞图像进行语义分割是一项重要技术,然而,它需要大量的图像和地面真实标签进行训练。为了解决以上问题,我们考虑一个尽可能少使用数据的高效学习框架,并提出了两种学习策略:可以只使用一个训练样本进行学习的一次性分割和仅为部分图像分配注释的部分监督分割。此外,我们介绍了受最近研究中提示学习启发的小提示图像的新分割方法。我们提出的方法使用基于细胞图像的预训练模型,通过注意机制将提示对的信息传达给目标图像以进行分割,从而实现高效学习并降低注释成本。通过对三种类型的显微细胞图像数据集进行的实验,我们确认了所提出的方法相对于常规方法提高了Dice分数系数(DSC)。