题目: Self-Supervised Viewpoint Learning From Image Collections
简介:
训练深度神经网络以估计对象的视点需要标记大型训练数据集。但是,手动标记视点非常困难,容易出错且耗时。另一方面,从互联网(例如汽车或人脸)上挖掘许多未分类的物体类别图像相对容易。我们试图回答这样的研究问题:是否可以仅通过自我监督将这种未标记的野外图像集合成功地用于训练一般对象类别的视点估计网络。这里的自我监督是指网络具有的唯一真正的监督信号是输入图像本身。我们提出了一种新颖的学习框架,该框架结合了“综合分析”范式,利用生成网络以视点感知的方式重构图像,并具有对称性和对抗性约束,以成功地监督我们的视点估计网络。我们表明,对于人脸,汽车,公共汽车和火车等几个对象类别,我们的方法在完全监督方法上具有竞争性。我们的工作为自我监督的观点学习开辟了进一步的研究,并为其提供了坚实的基础。