This paper proposes a novel adaptive sample space-based Viterbi algorithm for target localization in an online manner. As the discretized area of interest is defined as a finite number of hidden states, the most probable trajectory of the unspecified agent is computed efficiently via dynamic programming in a Hidden Markov Model (HMM) framework. Furthermore, the approach has no requirements about Gaussian assumption and linearization for Bayesian calculation. However, the issue of computational complexity becomes very critical as the number of hidden states increases for estimation accuracy and large space. Previous localization works, based on discrete-state HMM, handle a small number of hidden variables, which represent specific paths or places. Inspired by the k-d Tree algorithm (e.g., quadtree) that is commonly used in the computer vision field, we propose a belief propagation in the most probable belief space with a low to high-resolution sequentially, thus reducing the required resources significantly. Our method has three advantages for localization: (a) no Gaussian assumptions and linearization, (b) handling the whole area of interest, not specific or small map representations, (c) reducing computation time and required memory size. Experimental tests demonstrate our results in ultra-wideband (UWB) sensor networks.
翻译:本文建议了一个新的基于空间的适应性样样比 Viterbi 算法, 用于在线目标定位。 由于离散的兴趣领域被定义为一定数量的隐藏状态, 最有可能的未指明的代理的轨迹是通过隐藏 Markov 模型(HMM) 框架中的动态编程来有效计算的。 此外, 这种方法对高萨假设和巴伊西亚计算线性没有要求。 然而, 计算的复杂性问题变得非常关键, 因为对估计精确度和大空间而言隐藏的国家数量增加。 以离散状态 HMM 为基础的先前的本地化工程, 处理少量代表特定路径或地点的隐藏变量。 Kd树算法( 例如, 夸德特里) 在计算机视觉领域常用的Kd树算法( 例如, 夸德特里) 激励下, 我们提议在最有可能的信仰空间上传播一种低至高分辨率的顺序, 从而大大减少所需资源。 我们的方法在本地化方面有三个优势:(a) 没有高频假设和线化, (b) 处理整个兴趣领域, 而不是具体或小地图图示。 (c) 显示我们超频级网络的磁带测量测试中所需的时间和感官测试结果。 (c) 。