Attributed graph clustering is challenging as it requires joint modelling of graph structures and node attributes. Recent progress on graph convolutional networks has proved that graph convolution is effective in combining structural and content information, and several recent methods based on it have achieved promising clustering performance on some real attributed networks. However, there is limited understanding of how graph convolution affects clustering performance and how to properly use it to optimize performance for different graphs. Existing methods essentially use graph convolution of a fixed and low order that only takes into account neighbours within a few hops of each node, which underutilizes node relations and ignores the diversity of graphs. In this paper, we propose an adaptive graph convolution method for attributed graph clustering that exploits high-order graph convolution to capture global cluster structure and adaptively selects the appropriate order for different graphs. We establish the validity of our method by theoretical analysis and extensive experiments on benchmark datasets. Empirical results show that our method compares favourably with state-of-the-art methods.

9
下载
关闭预览

相关内容

CLUSTER:IEEE International Conference on Cluster Computing。 Explanation:IEEE集群计算国际会议。 Publisher:IEEE。 SIT: https://dblp.uni-trier.de/db/conf/cluster/

Spectral clustering (SC) is a popular clustering technique to find strongly connected communities on a graph. SC can be used in Graph Neural Networks (GNNs) to implement pooling operations that aggregate nodes belonging to the same cluster. However, the eigendecomposition of the Laplacian is expensive and, since clustering results are graph-specific, pooling methods based on SC must perform a new optimization for each new sample. In this paper, we propose a graph clustering approach that addresses these limitations of SC. We formulate a continuous relaxation of the normalized minCUT problem and train a GNN to compute cluster assignments that minimize this objective. Our GNN-based implementation is differentiable, does not require to compute the spectral decomposition, and learns a clustering function that can be quickly evaluated on out-of-sample graphs. From the proposed clustering method, we design a graph pooling operator that overcomes some important limitations of state-of-the-art graph pooling techniques and achieves the best performance in several supervised and unsupervised tasks.

0
23
下载
预览

Existing knowledge distillation methods focus on convolutional neural networks~(CNNs), where the input samples like images lie in a grid domain, and have largely overlooked graph convolutional networks~(GCN) that handle non-grid data. In this paper, we propose to our best knowledge the first dedicated approach to {distilling} knowledge from a pre-trained GCN model. To enable the knowledge transfer from the teacher GCN to the student, we propose a local structure preserving module that explicitly accounts for the topological semantics of the teacher. In this module, the local structure information from both the teacher and the student are extracted as distributions, and hence minimizing the distance between these distributions enables topology-aware knowledge transfer from the teacher, yielding a compact yet high-performance student model. Moreover, the proposed approach is readily extendable to dynamic graph models, where the input graphs for the teacher and the student may differ. We evaluate the proposed method on two different datasets using GCN models of different architectures, and demonstrate that our method achieves the state-of-the-art knowledge distillation performance for GCN models.

0
21
下载
预览

Learning vector representations (aka. embeddings) of users and items lies at the core of modern recommender systems. Ranging from early matrix factorization to recently emerged deep learning based methods, existing efforts typically obtain a user's (or an item's) embedding by mapping from pre-existing features that describe the user (or the item), such as ID and attributes. We argue that an inherent drawback of such methods is that, the collaborative signal, which is latent in user-item interactions, is not encoded in the embedding process. As such, the resultant embeddings may not be sufficient to capture the collaborative filtering effect. In this work, we propose to integrate the user-item interactions --- more specifically the bipartite graph structure --- into the embedding process. We develop a new recommendation framework Neural Graph Collaborative Filtering (NGCF), which exploits the user-item graph structure by propagating embeddings on it. This leads to the expressive modeling of high-order connectivity in user-item graph, effectively injecting the collaborative signal into the embedding process in an explicit manner. We conduct extensive experiments on three public benchmarks, demonstrating significant improvements over several state-of-the-art models like HOP-Rec and Collaborative Memory Network. Further analysis verifies the importance of embedding propagation for learning better user and item representations, justifying the rationality and effectiveness of NGCF. Codes are available at https://github.com/xiangwang1223/neural_graph_collaborative_filtering.

0
8
下载
预览

Graph convolutional network (GCN) has been successfully applied to many graph-based applications; however, training a large-scale GCN remains challenging. Current SGD-based algorithms suffer from either a high computational cost that exponentially grows with number of GCN layers, or a large space requirement for keeping the entire graph and the embedding of each node in memory. In this paper, we propose Cluster-GCN, a novel GCN algorithm that is suitable for SGD-based training by exploiting the graph clustering structure. Cluster-GCN works as the following: at each step, it samples a block of nodes that associate with a dense subgraph identified by a graph clustering algorithm, and restricts the neighborhood search within this subgraph. This simple but effective strategy leads to significantly improved memory and computational efficiency while being able to achieve comparable test accuracy with previous algorithms. To test the scalability of our algorithm, we create a new Amazon2M data with 2 million nodes and 61 million edges which is more than 5 times larger than the previous largest publicly available dataset (Reddit). For training a 3-layer GCN on this data, Cluster-GCN is faster than the previous state-of-the-art VR-GCN (1523 seconds vs 1961 seconds) and using much less memory (2.2GB vs 11.2GB). Furthermore, for training 4 layer GCN on this data, our algorithm can finish in around 36 minutes while all the existing GCN training algorithms fail to train due to the out-of-memory issue. Furthermore, Cluster-GCN allows us to train much deeper GCN without much time and memory overhead, which leads to improved prediction accuracy---using a 5-layer Cluster-GCN, we achieve state-of-the-art test F1 score 99.36 on the PPI dataset, while the previous best result was 98.71 by [16].

0
6
下载
预览

In this paper, we present an accurate and scalable approach to the face clustering task. We aim at grouping a set of faces by their potential identities. We formulate this task as a link prediction problem: a link exists between two faces if they are of the same identity. The key idea is that we find the local context in the feature space around an instance (face) contains rich information about the linkage relationship between this instance and its neighbors. By constructing sub-graphs around each instance as input data, which depict the local context, we utilize the graph convolution network (GCN) to perform reasoning and infer the likelihood of linkage between pairs in the sub-graphs. Experiments show that our method is more robust to the complex distribution of faces than conventional methods, yielding favorably comparable results to state-of-the-art methods on standard face clustering benchmarks, and is scalable to large datasets. Furthermore, we show that the proposed method does not need the number of clusters as prior, is aware of noises and outliers, and can be extended to a multi-view version for more accurate clustering accuracy.

0
16
下载
预览

Modeling generative process of growing graphs has wide applications in social networks and recommendation systems, where cold start problem leads to new nodes isolated from existing graph. Despite the emerging literature in learning graph representation and graph generation, most of them can not handle isolated new nodes without nontrivial modifications. The challenge arises due to the fact that learning to generate representations for nodes in observed graph relies heavily on topological features, whereas for new nodes only node attributes are available. Here we propose a unified generative graph convolutional network that learns node representations for all nodes adaptively in a generative model framework, by sampling graph generation sequences constructed from observed graph data. We optimize over a variational lower bound that consists of a graph reconstruction term and an adaptive Kullback-Leibler divergence regularization term. We demonstrate the superior performance of our approach on several benchmark citation network datasets.

0
3
下载
预览

Network embedding aims to learn a latent, low-dimensional vector representations of network nodes, effective in supporting various network analytic tasks. While prior arts on network embedding focus primarily on preserving network topology structure to learn node representations, recently proposed attributed network embedding algorithms attempt to integrate rich node content information with network topological structure for enhancing the quality of network embedding. In reality, networks often have sparse content, incomplete node attributes, as well as the discrepancy between node attribute feature space and network structure space, which severely deteriorates the performance of existing methods. In this paper, we propose a unified framework for attributed network embedding-attri2vec-that learns node embeddings by discovering a latent node attribute subspace via a network structure guided transformation performed on the original attribute space. The resultant latent subspace can respect network structure in a more consistent way towards learning high-quality node representations. We formulate an optimization problem which is solved by an efficient stochastic gradient descent algorithm, with linear time complexity to the number of nodes. We investigate a series of linear and non-linear transformations performed on node attributes and empirically validate their effectiveness on various types of networks. Another advantage of attri2vec is its ability to solve out-of-sample problems, where embeddings of new coming nodes can be inferred from their node attributes through the learned mapping function. Experiments on various types of networks confirm that attri2vec is superior to state-of-the-art baselines for node classification, node clustering, as well as out-of-sample link prediction tasks. The source code of this paper is available at https://github.com/daokunzhang/attri2vec.

0
4
下载
预览

An attributed network enriches a pure network by encoding a part of widely accessible node auxiliary information into node attributes. Learning vector representation of each node a.k.a. Network Embedding (NE) for such an attributed network by considering both structure and attribute information has recently attracted considerable attention, since each node embedding is simply a unified low-dimension vector representation that makes downstream tasks e.g. link prediction more efficient and much easier to realize. Most of previous works have not considered the significant case of a network with incomplete structure information, which however, would often appear in our real-world scenarios e.g. the abnormal users in a social network who intentionally hide their friendships. And different networks obviously have different levels of incomplete structure information, which imposes more challenges to balance two sources of information. To tackle that, we propose a robust NE method called Attributed Biased Random Walks (ABRW) to employ attribute information for compensating incomplete structure information by using transition matrices. The experiments of link prediction and node classification tasks on real-world datasets confirm the robustness and effectiveness of our method to the different levels of the incomplete structure information.

0
3
下载
预览

Attributed network embedding has received much interest from the research community as most of the networks come with some content in each node, which is also known as node attributes. Existing attributed network approaches work well when the network is consistent in structure and attributes, and nodes behave as expected. But real world networks often have anomalous nodes. Typically these outliers, being relatively unexplainable, affect the embeddings of other nodes in the network. Thus all the downstream network mining tasks fail miserably in the presence of such outliers. Hence an integrated approach to detect anomalies and reduce their overall effect on the network embedding is required. Towards this end, we propose an unsupervised outlier aware network embedding algorithm (ONE) for attributed networks, which minimizes the effect of the outlier nodes, and hence generates robust network embeddings. We align and jointly optimize the loss functions coming from structure and attributes of the network. To the best of our knowledge, this is the first generic network embedding approach which incorporates the effect of outliers for an attributed network without any supervision. We experimented on publicly available real networks and manually planted different types of outliers to check the performance of the proposed algorithm. Results demonstrate the superiority of our approach to detect the network outliers compared to the state-of-the-art approaches. We also consider different downstream machine learning applications on networks to show the efficiency of ONE as a generic network embedding technique. The source code is made available at https://github.com/sambaranban/ONE.

0
5
下载
预览

We present graph attention networks (GATs), novel neural network architectures that operate on graph-structured data, leveraging masked self-attentional layers to address the shortcomings of prior methods based on graph convolutions or their approximations. By stacking layers in which nodes are able to attend over their neighborhoods' features, we enable (implicitly) specifying different weights to different nodes in a neighborhood, without requiring any kind of costly matrix operation (such as inversion) or depending on knowing the graph structure upfront. In this way, we address several key challenges of spectral-based graph neural networks simultaneously, and make our model readily applicable to inductive as well as transductive problems. Our GAT models have achieved or matched state-of-the-art results across four established transductive and inductive graph benchmarks: the Cora, Citeseer and Pubmed citation network datasets, as well as a protein-protein interaction dataset (wherein test graphs remain unseen during training).

0
8
下载
预览
小贴士
相关论文
Filippo Maria Bianchi,Daniele Grattarola,Cesare Alippi
23+阅读 · 2020年6月3日
Distillating Knowledge from Graph Convolutional Networks
Yiding Yang,Jiayan Qiu,Mingli Song,Dacheng Tao,Xinchao Wang
21+阅读 · 2020年3月23日
Xiang Wang,Xiangnan He,Meng Wang,Fuli Feng,Tat-Seng Chua
8+阅读 · 2019年5月20日
Wei-Lin Chiang,Xuanqing Liu,Si Si,Yang Li,Samy Bengio,Cho-Jui Hsieh
6+阅读 · 2019年5月20日
Zhongdao Wang,Liang Zheng,Yali Li,Shengjin Wang
16+阅读 · 2019年3月27日
Generative Graph Convolutional Network for Growing Graphs
Da Xu,Chuanwei Ruan,Kamiya Motwani,Evren Korpeoglu,Sushant Kumar,Kannan Achan
3+阅读 · 2019年3月6日
Daokun Zhang,Jie Yin,Xingquan Zhu,Chengqi Zhang
4+阅读 · 2019年1月14日
Attributed Network Embedding for Incomplete Structure Information
Chengbin Hou,Shan He,Ke Tang
3+阅读 · 2018年11月28日
Sambaran Bandyopadhyay,Lokesh N,M. N. Murty
5+阅读 · 2018年11月19日
Petar Veličković,Guillem Cucurull,Arantxa Casanova,Adriana Romero,Pietro Liò,Yoshua Bengio
8+阅读 · 2018年2月4日
相关资讯
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
331+阅读 · 2019年7月9日
Hierarchically Structured Meta-learning
CreateAMind
13+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
8+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
11+阅读 · 2019年4月13日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
7+阅读 · 2019年2月25日
无监督元学习表示学习
CreateAMind
22+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
32+阅读 · 2019年1月3日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
6+阅读 · 2018年2月7日
【论文】图上的表示学习综述
机器学习研究会
9+阅读 · 2017年9月24日
Top
微信扫码咨询专知VIP会员