项目名称: 嵌段共聚物平均场框架中的数学问题
项目编号: No.11201016
项目类型: 青年科学基金项目
立项/批准年度: 2013
项目学科: 数理科学和化学
项目作者: 阮元龙
作者单位: 北京航空航天大学
项目金额: 22万元
中文摘要: 我们在自洽平均场理论的框架下,分析嵌段共聚物建模相关的数学问题。嵌段共聚物自由能的初始模型十分复杂,我们运用Landau-Brazovsky模型来近似原本的模型,将原问题进行了简化和近似,通过分析近似模型相关的数学问题来深入了解嵌段共聚物的性质。这一近似模型以二阶变分的形式出现,一阶导数项系数与最高阶导数项符号相反,并带有非线性位势函数,多个控制参数以及外部约束条件。 能量泛函的积分区间为整个实数空间,这使得许多紧性定理不再成立,加之函数的周期也是一个变量,这给寻求临界点带来了困难,另外泛函临界点对于控制参数的依赖关系也十分复杂,这里面有许多数学问题在文献中尚未被深入讨论过,因此需要深入细致地讨论和研究。在对模型有更多理解之后,我们还将考虑如何设计出较好的模拟算法。
中文关键词: Landau-Brazovsky模型;嵌段共聚物;粘性解;rank-one凸性;临界点
英文摘要: In this project, we are interested in mathematical problems relating to modeling of copolymers. Landau-Brazovsky model is employed to approximate and replace the originally complex model. We then investigate mathematical properties of copolymer by considering this approximating model.The Landau-Brazovsky model takes the form of second order variational functional with integral constaints. Several controlling parameters also appear in the model. The integral of the functional is defined on the whole real space, resulting in a lack of compactness of critical sequences. Moreover, the period is itself a variable, which adds extra difficult to the analysis of our problem. In addition, the critical points depend complicatedly on the controlling parameters. The problems has not been carefully studied in the literature and so a thorough investigation is needed. Besides we also try to design efficient simulation algorithm based on the theoretical results.
英文关键词: Landau-Brazovsky Model;Copolymer;rank-one convexity;Viscosity solution;Critical point