Diverse human motion prediction aims at predicting multiple possible future pose sequences from a sequence of observed poses. Previous approaches usually employ deep generative networks to model the conditional distribution of data, and then randomly sample outcomes from the distribution. While different results can be obtained, they are usually the most likely ones which are not diverse enough. Recent work explicitly learns multiple modes of the conditional distribution via a deterministic network, which however can only cover a fixed number of modes within a limited range. In this paper, we propose a novel sampling strategy for sampling very diverse results from an imbalanced multimodal distribution learned by a deep generative model. Our method works by generating an auxiliary space and smartly making randomly sampling from the auxiliary space equivalent to the diverse sampling from the target distribution. We propose a simple yet effective network architecture that implements this novel sampling strategy, which incorporates a Gumbel-Softmax coefficient matrix sampling method and an aggressive diversity promoting hinge loss function. Extensive experiments demonstrate that our method significantly improves both the diversity and accuracy of the samplings compared with previous state-of-the-art sampling approaches. Code and pre-trained models are available at https://github.com/Droliven/diverse_sampling.
翻译:人类运动多样性预测旨在预测从观察到的姿势序列中多种可能的未来构成序列。 以往的方法通常使用深层次的基因网络来模拟有条件的数据分布,然后随机抽样结果。 虽然可以取得不同的结果,但它们通常是最可能没有多样性的。 最近的工作明确学习了通过确定性网络进行有条件分布的多种模式,但只能涵盖有限范围内的固定模式数量。 本文中,我们提出了一个新颖的抽样战略,用于取样从由深层基因模型所学到的不平衡的多式联运分布中获得的非常多样化的结果。 我们的方法是生成一个辅助空间,并从辅助空间中随机抽取相当于目标分布中不同取样的样本。我们提出了一个简单而有效的网络结构,用以实施这一新颖的取样战略,其中包括一个Gumbel-Softmax系数矩阵取样方法,以及一种积极的多样性,促进链路损失功能。 广泛的实验表明,我们的方法大大改进了取样的多样性和准确性,与以前的状态- 艺术采样方法相比。 可在 https://givith/Driveroversb./Dampstrainb.