In medical image analysis, low-resolution images negatively affect the performance of medical image interpretation and may cause misdiagnosis. Single image super-resolution (SISR) methods can improve the resolution and quality of medical images. Currently, Generative Adversarial Networks (GAN) based super-resolution models are widely used and have shown very good performance. Real-Enhanced Super-Resolution Generative Adversarial Network (Real-ESRGAN) is one of the recent practical GAN-based models which is widely used in the field of general image super-resolution. Unlike natural datasets, medical datasets do not have very high spatial resolution. Transfer learning is one of the effective methods which uses models trained with external datasets (often natural datasets), and fine-tunes them to enhance the resolution of medical images. In our proposed approach, the pre-trained generator and discriminator networks of the Real-ESRGAN model are fine-tuned using medical image datasets. In this paper, we worked on retinal images and chest X-ray images. We used the STARE dataset of retinal images and Tuberculosis Chest X-rays (Shenzhen) dataset. The proposed model produces more accurate and natural textures, and the output images have better detail and resolution compared to the original Real-ESRGAN model.
翻译:在医学图像分析中,低分辨率图像对医学图像判读的性能有负面影响,并可能造成误解。单一图像超分辨率(SISR)方法可以提高医学图像的分辨率和质量。目前,基于基因反反向网络(GAN)的超级分辨率模型被广泛使用,并表现出非常良好的性能。真正增强的超分辨率反向网络(Real-ESRGAN)是最近在一般图像超分辨率领域广泛使用的实用的GAN模型之一。与自然数据集不同,医学数据集没有很高的空间分辨率。传输学习是使用经过外部数据集培训的模型(通常为自然数据集)的有效方法之一,并微调这些模型来增强医学图像的分辨率。在我们拟议的方法中,经过预先培训的Re-ESRGAN模型的生成器和导师网络(Real-ESRGAN模型)使用医疗图像数据集进行微调。在本文中,我们制作了视像图像和胸部X光射线图像。我们使用了STARE数据库,并比较了RENSR的原始分辨率和直径图像。我们使用了SERAN的原始和直径图像。我们使用了SERAN的原始和直径图像。我们使用了SERV的模型,比较了RV的原始的原始的原始和直方图像图像。