The efficient segmentation of foreground text information from the background in degraded color document images is a hot research topic. Due to the imperfect preservation of ancient documents over a long period of time, various types of degradation, including staining, yellowing, and ink seepage, have seriously affected the results of image binarization. In this paper, a three-stage method is proposed for image enhancement and binarization of degraded color document images by using discrete wavelet transform (DWT) and generative adversarial network (GAN). In Stage-1, we use DWT and retain the LL subband images to achieve the image enhancement. In Stage-2, the original input image is split into four (Red, Green, Blue and Gray) single-channel images, each of which trains the independent adversarial networks. The trained adversarial network models are used to extract the color foreground information from the images. In Stage-3, in order to combine global and local features, the output image from Stage-2 and the original input image are used to train the independent adversarial networks for document binarization. The experimental results demonstrate that our proposed method outperforms many classical and state-of-the-art (SOTA) methods on the Document Image Binarization Contest (DIBCO) dataset. We release our implementation code at https://github.com/abcpp12383/ThreeStageBinarization.
翻译:在已退化的彩色文档图像中,背景背景的浅色文本信息的有效分割是一个热门的研究课题。由于长期保存古代文件不完善,各种类型的退化,包括污渍、黄色和墨水渗出,严重影响了图像的二进制结果。在本文中,建议采用三阶段方法,利用离散的波盘变换(DWT)和基因对抗网络(GAN)来增强已退化的彩色文档图像并进行二进制。在第1阶段,我们使用DWT并保留LLL子带图像来实现图像的增强。在第二阶段,原始输入图像分为四种(红色、绿色、蓝色和灰色)单通道图像,其中每种图像都用于培训独立的对抗网络。经过培训的对抗网络模型用于从图像中提取背景信息的颜色。在第3阶段,为了将全球和地方特征、第2阶段的输出图像图像图像和原始输入图像图像图像图像用于培训独立的对立网络,以便实现图像的增强。实验结果显示,我们所提议的方法超越了我们用于许多古典-DI-B版本版本版本的版本数据库数据库数据库数据。