Quantum machine learning (QML) has received increasing attention due to its potential to outperform classical machine learning methods in various problems. A subclass of QML methods is quantum generative adversarial networks (QGANs) which have been studied as a quantum counterpart of classical GANs widely used in image manipulation and generation tasks. The existing work on QGANs is still limited to small-scale proof-of-concept examples based on images with significant down-scaling. Here we integrate classical and quantum techniques to propose a new hybrid quantum-classical GAN framework. We demonstrate its superior learning capabilities by generating $28 \times 28$ pixels grey-scale images without dimensionality reduction or classical pre/post-processing on multiple classes of the standard MNIST and Fashion MNIST datasets, which achieves comparable results to classical frameworks with 3 orders of magnitude less trainable generator parameters. To gain further insight into the working of our hybrid approach, we systematically explore the impact of its parameter space by varying the number of qubits, the size of image patches, the number of layers in the generator, the shape of the patches and the choice of prior distribution. Our results show that increasing the quantum generator size generally improves the learning capability of the network. The developed framework provides a foundation for future design of QGANs with optimal parameter set tailored for complex image generation tasks.
翻译:量子机器学习(QML)由于有可能在各种问题中超越古典机器学习方法而日益受到越来越多的关注。QML方法的一个子类是量子基因式对抗网络(QGANs),作为在图像操纵和生成任务中广泛使用的古典GANs的量子对应器。QGANs的现有工作仍然局限于基于图像的小规模概念验证实例,而图像则具有显著的降幅。我们在此整合了传统和量子技术,以提出一个新的混合量子经典GAN框架。我们通过在标准MNIST和Fashon MNIST数据集多类中生成28美元像素像素的灰色比例图像(QGANs)来显示其优异的学习能力。我们通过生成28个比特、图像大小的28比特等值灰度图像来显示其优异的学习能力,而没有降低维度,也没有在标准MNIST和MNIST数据集中进行典型的预后处理。为了改进我们以前设计系统化的系统探索其参数空间的影响,我们通过不同的量位数、图像比特、图像比大小、图像比重QQQ比例、提高的G发电机结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构,从而显示我们开发的升级结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构的升级。