项目名称: 高速宽带TIADC并行采集系统非均匀失配动态补偿研究
项目编号: No.61501087
项目类型: 青年科学基金项目
立项/批准年度: 2016
项目学科: 无线电电子学、电信技术
项目作者: 潘卉青
作者单位: 电子科技大学
项目金额: 19万元
中文摘要: ADC时间交替(Time-interleaved ADC,TIADC)并行采样技术是现有条件下实现高速率高精度数据采集系统的最有效方法之一。然而,TIADC结构依赖于各通道间参数的精确匹配,否则将导致采样信号的非均匀,严重降低系统性能。.针对高速宽带TIADC并行采集系统,基于数字信号处理实现通道失配误差的动态补偿是本项目要解决的关键问题,拟展开如下创新性研究:(1) 拟引入神经网络的非线性系统建模,研究新的盲估计方法,快速、准确地提取规模化并行采样通道失配非均匀误差;(2) 拟研究多变量非线性系统的逆控制方法,设计具有自适应能力和高实时性的非均匀采样信号综合重构算法;(3) 基于并行处理技术进行带宽数字补偿,降低模拟实施的复杂性,提高系统的测量带宽,校正通道频率响应失配所引入非均匀,满足宽带信号的测试需要;(4) 基于超宽带数字示波器原型机,完成本项目研究方法的工程化验证。
中文关键词: 时间交替并行采样;通道失配;非均匀系统建模;非均匀信号重构;自适应信号处理
英文摘要: Nowadays, the most effective method to acquire high sampling speed as much as possible and maintain sampling precision, is to build Time-interleaved ADC (TIADC) parallel sampling system. However, TIADC technique relies on the exact matching of channels, otherwise it will result in signal nonuniform sampling and degrade the system’s performance seriously. .To this high speed broadband TIADC parallel acquisition system, based on digital signal processing to realize channel mismatches dynamic compensation is the key innovative research of this project: (1)Based on nonlinear neural network system modeling, studying the novel blind estimation method to extract the channel nonuniform mismatches fast and accurately. (2)Based on inverse control method of multivariable nonlinear system, designing nonuniform synthesized reconstruction algorithm with self-adaptive ability and high real-time performance for the nonuniform sampling system. (3)Designing digital bandwidth compensation algorithm base on parallel processing technology to reduce the complexity of analog implementation, and correct channel frequency response mismatch that introduced by nonuniform sampling, meet the broadband signal test needs. (4)Based on ultra broadband digital prototype oscilloscope, completing the engineering verification of this project’s algorithm.
英文关键词: time interleaved parallel sampling;channel mismatches;modeling of nonuniform system;dynamic compensation of nonuniform signal;self-adaptive signal processing