Motivated by the problem of learning with small sample sizes, this paper shows how to incorporate into support-vector machines (SVMs) those properties that have made convolutional neural networks (CNNs) successful. Particularly important is the ability to incorporate domain knowledge of invariances, e.g., translational invariance of images. Kernels based on the \textit{maximum} similarity over a group of transformations are not generally positive definite. Perhaps it is for this reason that they have not been studied theoretically. We address this lacuna and show that positive definiteness indeed holds \textit{with high probability} for kernels based on the maximum similarity in the small training sample set regime of interest, and that they do yield the best results in that regime. We also show how additional properties such as their ability to incorporate local features at multiple spatial scales, e.g., as done in CNNs through max pooling, and to provide the benefits of composition through the architecture of multiple layers, can also be embedded into SVMs. We verify through experiments on widely available image sets that the resulting SVMs do provide superior accuracy in comparison to well-established deep neural network benchmarks for small sample sizes.
翻译:本文以小样本规模的学习问题为动力,展示了如何将那些使神经神经网络(CNNs)具有进化成功效果的特性纳入支持-矢量机(SVMs),其中特别重要的是,是否有能力纳入无差异域知识,例如图像的翻译变异性;基于对一组变异的Textit{最大}相似性的内核一般并不肯定。也许正是由于这个原因,它们尚未在理论上加以研究。我们解决了这一缺陷,并表明在小型培训样板系统最大相似性的基础上,正确定性确实为内核提供了\text{极有可能},而且它们确实在该系统中产生了最佳效果。我们还表明,通过最大集中在CNNs等多空间尺度上将本地特征纳入本地功能的能力,以及通过多层结构提供组成的好处,如何在SVMSMs中嵌入。我们通过对广泛存在的图像进行实验,核实由此形成的SVMSMs在深度基准上产生的微小样本的精确度能够提供高超度的精确度数据。