Multiple-try Metropolis (MTM) is a popular Markov chain Monte Carlo method with the appealing feature of being amenable to parallel computing. At each iteration, it samples several candidates for the next state of the Markov chain and randomly selects one of them based on a weight function. The canonical weight function is proportional to the target density. We show both theoretically and empirically that this weight function induces pathological behaviours in high dimensions, especially during the convergence phase. We propose to instead use weight functions akin to the locally-balanced proposal distributions of Zanella (2020), thus yielding MTM algorithms that do not exhibit those pathological behaviours. To theoretically analyse these algorithms, we study the high-dimensional performance of ideal schemes that can be think of as MTM algorithms which sample an infinite number of candidates at each iteration, as well as the discrepancy between such schemes and the MTM algorithms which sample a finite number of candidates. Our analysis unveils a strong distinction between the convergence and stationary phases: in the former, local balancing is crucial and effective to achieve fast convergence, while in the latter, the canonical and novel weight functions yield similar performance. Numerical experiments include an application in precision medicine involving a computationally expensive forward model, which makes the use of parallel computing within MTM iterations beneficial.


翻译:多重大都会( MTM) 是一种流行的Markov 链条 Monte Carlo (MTM) 方法, 其诱人特征是可以进行平行计算。 每次迭代时, 都会为下个Markov 链的下一个状态选取若干候选人, 并根据重量函数随机选择其中之一 。 康纳权重函数与目标密度成比例 。 我们从理论上和实验上都显示, 这个权重函数会引发高维度的病理行为, 特别是在趋同阶段 。 我们提议使用与Zanella (20202020年) 本地平衡的建议分布相近的权重函数, 从而产生不表现出病理行为的 MTM 算法。 在理论上分析这些算法时, 我们研究理想方案的高维度性功能, 可以被想象为MTM 算法, 每次迭代选取无限数量的候选人, 以及这种算法与抽取有限候选人的MTM 算法之间的差异。 我们的分析揭示了趋同点和固定的阶段的分度功能: 在以前, 地方平衡是关键和有效的, 实现快速趋同的MTM 趋近的趋同, 而后, 在后, 我们的研究中, 将产生一个具有超重的计算方法, 并轨的计算, 并进的计算, 并进进的计算, 并进的计算, 在后, 在后, 并进的计算中, 并进的计算中, 的计算中, 产生一个新的计算, 等的计算。

0
下载
关闭预览

相关内容

【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年1月23日
Arxiv
0+阅读 · 2023年1月22日
Arxiv
12+阅读 · 2021年3月24日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员