项目名称: 非线性Cahn-Hilliard型方程自适应高阶稳定数值方法分析

项目编号: No.11301167

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 宋怀玲

作者单位: 湖南大学

项目金额: 22万元

中文摘要: 强非线性、小参数、高阶偏微分方程的高效数值方法是科学计算领域的一个重大研究问题,涉及面广,模型众多。本项目以经典的Cahn-Hilliard模型方程为切入点,发展一类高阶无条件稳定、大时间步长、自适应的新型耦合数值方法,从格式构建、理论分析、计算实现三方面出发,主要研究:(1)Cahn-Hilliard方程的有限体积及紧致差分的IMEX-Runge-Kutta\Strong stability preserving稳定高阶方法的构造及理论分析;(2)Cahn-Hilliard方程的时空自适应方法的构造和理论分析。项目所提出的新方法具有时间步长大、稳定性强、计算量低、存储量小等优点,可以有效处理强非线性及小参数,可以满足大规模计算实际问题时对模拟精度和置信度的要求,实现高效高精度算法。

中文关键词: Cahn-Hilliard;大时间步长;高阶;稳定性;

英文摘要: Efficient numerical method for strong nonlinear,small parameter, high-order partial differential equation is an important research field of scientific computing.This project is based on the classical Cahn-Hilliard model equation. A class of adaptive high-order methods of unconditionally stability, lager time-step will be proposed. The contents are as follows:(1) for the Cahn-Hilliard equation, the high-order lager time-step methods of FV\compact difference coupled with IMEX-Runge-Kutta\Strong stability preserving will be analyzed. (2) the space-time adaptive method will be given, and the theoretical analysis will be deduced. The methods in this project have some advantages: lager time-step, strong stability, low computational complexity, small storage capacity etc., and could effectively solve the problems with strong nonlinear, small parameter, high order partial differential equations. It might meet the simulation accuracy and reliability requirements of large-scale computing problems, and achieve high efficiency and high precision algorithm.

英文关键词: Cahn-Hilliard;larger time-step;high-order;stability;

成为VIP会员查看完整内容
0

相关内容

【中科大】数值计算方法扩充课程,116页pdf
专知会员服务
81+阅读 · 2022年1月7日
【NeurIPS 2021】流形上的注意力机制:规范等变的Transformer
专知会员服务
21+阅读 · 2021年7月31日
【开放书】《矩阵流形优化算法》,241页pdf
专知会员服务
93+阅读 · 2021年7月3日
专知会员服务
49+阅读 · 2021年6月28日
【干货书】数值Python计算,Numerical Python,709页pdf
专知会员服务
112+阅读 · 2021年5月30日
「数据数学:从理论到计算」EPFL硬核课程
专知会员服务
42+阅读 · 2021年1月31日
《常微分方程》笔记,419页pdf
专知会员服务
71+阅读 · 2020年8月2日
神经网络常微分方程 (Neural ODEs) 解析
AI科技评论
40+阅读 · 2019年8月9日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
小贴士
相关主题
相关VIP内容
【中科大】数值计算方法扩充课程,116页pdf
专知会员服务
81+阅读 · 2022年1月7日
【NeurIPS 2021】流形上的注意力机制:规范等变的Transformer
专知会员服务
21+阅读 · 2021年7月31日
【开放书】《矩阵流形优化算法》,241页pdf
专知会员服务
93+阅读 · 2021年7月3日
专知会员服务
49+阅读 · 2021年6月28日
【干货书】数值Python计算,Numerical Python,709页pdf
专知会员服务
112+阅读 · 2021年5月30日
「数据数学:从理论到计算」EPFL硬核课程
专知会员服务
42+阅读 · 2021年1月31日
《常微分方程》笔记,419页pdf
专知会员服务
71+阅读 · 2020年8月2日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员