We study fully dynamic online selection problems in an adversarial/stochastic setting that includes Bayesian online selection, prophet inequalities, posted price mechanisms, and stochastic probing problems subject to combinatorial constraints. In the classical ``incremental'' version of the problem, selected elements remain active until the end of the input sequence. On the other hand, in the fully dynamic version of the problem, elements stay active for a limited time interval, and then leave. This models, for example, the online matching of tasks to workers with task/worker-dependent working times, and sequential posted pricing of perishable goods. A successful approach to online selection problems in the adversarial setting is given by the notion of Online Contention Resolution Scheme (OCRS), that uses a priori information to formulate a linear relaxation of the underlying optimization problem, whose optimal fractional solution is rounded online for any adversarial order of the input sequence. Our main contribution is providing a general method for constructing an OCRS for fully dynamic online selection problems. Then, we show how to employ such OCRS to construct no-regret algorithms in a partial information model with semi-bandit feedback and adversarial inputs.
翻译:我们在一个充满活力的在线选择环境中研究充分动态的在线选择问题,其中包括巴伊西亚人的在线选择、先知的不平等、公布的价格机制和受组合限制的随机测试问题。在典型的“入门”问题版本中,选定要素在输入序列结束之前仍然活跃。另一方面,在完全动态的问题版本中,元素在有限的时间间隔内保持活跃,然后离开。例如,这些模型将任务在线匹配给有任务/工人依赖的工作时间的工人,并按顺序公布易腐货物的定价。在对抗环境中,对在线选择问题的成功做法是由在线内容解析计划(OCRS)的概念提供的,它使用事先信息来制定潜在的优化问题的线性松动。在输入序列的任何对抗顺序中,其最佳的零碎数解决方案都是在网上四舍四入四入。我们的主要贡献是提供一种一般方法,用来为完全动态的在线选择问题构建OCRS。然后,我们展示如何利用这种OCRS和在半宽带反馈的对抗性信息模型中建立零位算法。